• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers unveil sperm release mechanism in bryophytes

Bioengineer by Bioengineer
June 3, 2024
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using liverwort (Marchantia polymorpha) as a model, researchers led by Prof. LI Hongju from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences have explored the molecular mechanism of sperm release in bryophytes.

MpMLO1 localized on the plasma membrane of tip cells induces cytoplasmic Ca2+ increase

Credit: LI Hongju’s group

Using liverwort (Marchantia polymorpha) as a model, researchers led by Prof. LI Hongju from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences have explored the molecular mechanism of sperm release in bryophytes.

The study was published in Nature Plants.

Sexual reproduction is essential for the environmental adaptation and evolution of plants. Unlike angiosperms, which rely on pollen tube growth to deliver immotile sperm cells to the embryo sac for fertilization, motile sperm in the basal land plants, bryophytes, are released into the water and swim to the egg cell in the archegonia. While the fertilization process in bryophytes has intrigued many researchers, the factors that regulate sperm release have remained unknown.

In this study, the researchers used RNA sequencing and analysis to identify four Mildew Resistance Locus O (MpMLO) proteins that are specifically expressed in the reproductive tissues of Marchantia. Expression pattern analysis revealed that these MpMLOs are expressed only in antheridia, which contain the sperm cells.

Using the CRISPR/Cas9 system, the researchers generated the Mpmlo1 mutant, which failed to release sperm. Subcellular localization revealed that MpMLO1-Citrine first localizes to the plasma membrane of tip cells at the end of the antheridia jacket layer, which causes cell death of these cells.

In contrast, the researchers found that tip cells in the Mpmlo1 mutant do not undergo cell death after antheridia maturation and continue to enlarge even after antheridia degeneration due to antheridia aging. By introducing the Ca2+ sensor R-GECO1 into both wild-type and Mpmlo1 mutant plants, the researchers were able to study the dynamic variation of Ca2+ in antheridia jacket cells.

They recorded high Ca2+ levels in the tip cells that burst open to release the sperm, while they found reduced cytoplasmic Ca2+ levels in the tip cells of the Mpmlo1 mutant that failed to release sperm.

In conclusion, the researchers found that programmed cell death (PCD) is a prerequisite for sperm release from Marchantia antheridia. MpMLO1, expressed in tip cells, increases the cytoplasmic Ca2+ levels and induces PCD in these cells. Subsequent water entry into the antheridial pore transports the sperm mucilage to the receptacle surface for further fertilization.

This study sheds light on the molecular basis of sperm discharge in ancestral land plants and highlights the evolutionary conservation of the MLO-Ca2+ signaling module, which can be traced back to the last common ancestor of liverworts and flowering plants.



Journal

Nature Plants

DOI

10.1038/s41477-024-01703-1

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

MpMLO1 controls sperm discharge in liverwort

Article Publication Date

3-Jun-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Unraveling Microbial Interactions in Ruminant Nutrition

Unraveling Microbial Interactions in Ruminant Nutrition

August 25, 2025
Exploring Phlomoides rotata’s Complete Mitochondrial Genome

Exploring Phlomoides rotata’s Complete Mitochondrial Genome

August 25, 2025

Surviving Deserts: The Adaptive Genus Tribulus

August 25, 2025

Direct Repeats Discovered Near Intron Splice Sites

August 25, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    139 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MALAT1 Knockdown Reduces High Glucose Neuronal Apoptosis

Evaluating My Dose Coach™ for Insulin Management in Diabetes

HIV-Linked Cervicovaginal Microbiome Changes in Peruvian Women

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.