• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers identify factors that heighten risk for catheter-associated urinary tract infections and sepsis

Bioengineer by Bioengineer
May 30, 2024
in Health
Reading Time: 3 mins read
0
polymicrobial infection
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Urinary catheters are required for nearly every surgical procedure. However, a major challenge for the health care industry is predicting who may develop catheter-associated urinary tract infections (CAUTIs) and when these infections may lead to death.

polymicrobial infection

Credit: Flores-Mireles Lab/University of Notre Dame

Urinary catheters are required for nearly every surgical procedure. However, a major challenge for the health care industry is predicting who may develop catheter-associated urinary tract infections (CAUTIs) and when these infections may lead to death.

Now, a study from the University of Notre Dame has identified a population that is more susceptible to developing a CAUTI.

Researchers showed that models with fibrinolytic deficiencies, or conditions that cause overactivation of the protein fibrin, had increased risk for developing severe and persistent CAUTIs. Additionally, they found these same models were more likely to develop sepsis.

Fibrin is vital in the formation of blood clots when the body attempts to repair injuries. When injured, the body calls on a process that uses fibrin to repair a wound, creating a fibrous structure to prevent bleeding during the healing process.

Ana Lidia Flores-Mireles, the Hawk Assistant Professor of Biological Sciences at Notre Dame, studied how this healing process could promote infection during urinary catheterization in animal models.

“A urinary catheter is constantly rubbing against bladder tissue, causing continuous inflammation and mechanical damage,” Flores-Mireles said. “The body will activate healing for the damaged bladder by recruiting the protein fibrinogen from the bloodstream. Fibrinogen will convert into fibrin, which creates net-like structures that accumulate where pathogens then colonize and promote persistent infection.”

The study published in Nature Communications found that the more fibrin “nets” the body creates, the more susceptible the model was to high pathogen colonization and the more fibrinogen was found in the circulatory system. As the amount of fibrinogen or fibrin increases in the bloodstream, the more likely a CAUTI is to spread to other organs and tissue.

However, when the researchers blocked fibrinogen recruitment or accumulation, it reduced CAUTIs because the pathogens needed the fibrin net-like structure to survive and persist.

The research suggests that catheterized patients given antifibrinolytic medications, or drugs that discourage bleeding, could be at a higher risk for developing a CAUTI. Antifibrinolytic medications are often used to treat postpartum hemorrhages, traumatic injuries and other surgical procedures — all of which could require catheters when treated.

Flores-Mireles believes that this study can be applied to better prevent and manage human CAUTI, especially due to the current lack of consensus on best practices for CAUTI treatment.

“We strongly believe these findings provide key data to inform urinary catheterization guidelines in health care facilities and intensive care units, which will provide a higher quality of life to patients and minimize risk for complications,” Flores-Mireles said.

To help prevent CAUTIs, Flores-Mireles and her lab are developing a novel catheter that minimizes the inflammation and mechanical damage caused by typical catheters, preventing fibrin structures from forming and pathogens from causing infection.

In addition to Flores-Mireles, the study, “Fibrinolytic-deficiencies predispose hosts to septicemia from a catheter-associated UTI,” was co-authored by Notre Dame’s Francis Castellino, Deborah Donahue, Victoria Ploplis, Jonathan Molina, Andrew Paik, Kurt Kohler, Christopher Gager, Marissa Andersen, Ellsa Wongso and Elizabeth Lucas; Washington University’s Wei Xu, Michael Caparon, Scott J. Hultgren, Karla Bergeron, Aleksandra Klim and Alana Desai; and the University of North Carolina’s Matthew Flick. Mireles, Castellino, Donahue and Ploplis are affiliated with Notre Dame’s W.M. Keck Center for Transgene Research.

Contact: Brandi Wampler, associate director of media relations, 574-631-2632, [email protected]



Journal

Nature Communications

Article Title

Fibrinolytic-deficiencies predispose hosts to septicemia from a catheter-associated UTI

Article Publication Date

27-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.