• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Examining exploding stars through the atomic nucleus

Bioengineer by Bioengineer
February 18, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of MSU

EAST LANSING, Mich. – Imagine being able to view microscopic aspects of a classical nova, a massive stellar explosion on the surface of a white dwarf star (about as big as Earth), in a laboratory rather than from afar via a telescope.

Cosmic detonations of this scale and larger created many of the atoms in our bodies, says Michigan State University's Christopher Wrede, who presented at the American Association for the Advancement of Science meeting. A safe way to study these events in laboratories on Earth is to investigate the exotic nuclei or "rare isotopes" that influence them.

"Astronomers observe exploding stars and astrophysicists model them on supercomputers," said Wrede, assistant professor of physics at MSU's National Superconducting Cyclotron Laboratory. "At NSCL and, in the future at the Facility for Rare Isotope Beams, we're able to measure the nuclear properties that drive stellar explosions and synthesize the chemical elements – essential input for the models. Rare isotopes are like the DNA of exploding stars."

Wrede's presentation explained how rare isotopes are produced and studied at MSU's NSCL, and how they shed light on the evolution of visible matter in the universe.

"Rare isotopes will help us to understand how stars processed some of the hydrogen and helium gas from the Big Bang into elements that make up solid planets and life," Wrede said. "Experiments at rare isotope beam facilities are beginning to provide the detailed nuclear physics information needed to understand our origins."

In a recent experiment, Wrede's team investigated stellar production of the radioactive isotope aluminum-26 present in the Milky Way. An injection of aluminum-26 into the nebula that formed the solar system could have influenced the amount of water on Earth.

Using a rare isotope beam created at NSCL, the team determined the last unknown nuclear-reaction rate affecting the production of aluminum-26 in classical novae.

They concluded that up to 30 percent could be produced in novae, and the rest must be produced in other sources like supernovae.

Future research can now focus on counting the number of novae in the galaxy per year, modeling the hydrodynamics of novae and investigating the other sources in complete nuclear detail.

To extend their reach to more extreme astrophysical events, nuclear scientists are continuing to improve their technology and techniques. Traditionally, stable ion beams have been used to measure nuclear reactions. For example, bombarding a piece of aluminum foil with a beam of protons can produce silicon atoms. However, exploding stars make radioactive isotopes of aluminum that would decay into other elements too quickly to make a foil target out of them.

"With FRIB, we will reverse the process; we'll create a beam of radioactive aluminum ions and use it to bombard a target of protons," Wrede said. "Once FRIB comes online, we will be able to measure many more of the nuclear reactions that affect exploding stars."

###

MSU is establishing FRIB as a new scientific user facility for the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. Under construction on campus and operated by MSU, FRIB will enable scientists to make discoveries about the properties of rare isotopes in order to better understand the physics of nuclei, nuclear astrophysics, fundamental interactions, and applications for society, including in medicine, homeland security and industry. Project completion is expected in 2022, with the project team managing to early completion in fiscal year 2021.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Media Contact

Layne Cameron
[email protected]
517-353-8819
@MSUnews

http://msutoday.msu.edu/journalists/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

September 20, 2025

Impact of Defect Size and Location on Spinal Fractures

September 20, 2025

New Metabolic Syndrome Score Validated in Teens

September 20, 2025

Low PDA Shunt Linked to Premature Infant Risks

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Caffeine Exposure Shapes Neurodevelopment in Premature Infants

Impact of Defect Size and Location on Spinal Fractures

New Metabolic Syndrome Score Validated in Teens

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.