• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Exploring lysosomal biology: current approaches and methods

Bioengineer by Bioengineer
May 7, 2024
in Biology
Reading Time: 2 mins read
0
Commonly used fluorescent dyes and protein markers for lysosomes.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Lysosomes are critical for cellular degradation, characterized by their acidic pH and array of hydrolytic enzymes. They degrade materials through endocytosis, phagocytosis, and autophagy, recycling essential components. Lysosomes also participate in vital cellular processes, and their dysfunction contributes to diseases such as lysosomal storage diseases, neurodegenerative disorders, and cancer. Research methods and tools have been developed to study lysosomes in cultured cells, C. elegans, and mice, key model systems. In cultured cells, lysosomes can be characterized and their functions investigated. C. elegans, with its short life cycle and genetic tools, offers a straightforward model for studying lysosomes in development and aging. In mice, transgenic models expressing lysosomal proteins provide insights into lysosomal function in vivo. While the well-established tools will continue to contribute to the study of lysosomal biology, it is necessary to develop novel assays for a better understanding of lysosomal functions in diverse physiological and pathological conditions. The methods and techniques summarized in this review provide a foundation for understanding lysosomal biology and exploring potential therapeutic targets. The review entitled “Exploring lysosomal biology: current approaches and methods” was published on Biophysics Reports (published on January, 2024).

Commonly used fluorescent dyes and protein markers for lysosomes.

Credit: Qiuyuan Yin,Chonglin Yang

Lysosomes are critical for cellular degradation, characterized by their acidic pH and array of hydrolytic enzymes. They degrade materials through endocytosis, phagocytosis, and autophagy, recycling essential components. Lysosomes also participate in vital cellular processes, and their dysfunction contributes to diseases such as lysosomal storage diseases, neurodegenerative disorders, and cancer. Research methods and tools have been developed to study lysosomes in cultured cells, C. elegans, and mice, key model systems. In cultured cells, lysosomes can be characterized and their functions investigated. C. elegans, with its short life cycle and genetic tools, offers a straightforward model for studying lysosomes in development and aging. In mice, transgenic models expressing lysosomal proteins provide insights into lysosomal function in vivo. While the well-established tools will continue to contribute to the study of lysosomal biology, it is necessary to develop novel assays for a better understanding of lysosomal functions in diverse physiological and pathological conditions. The methods and techniques summarized in this review provide a foundation for understanding lysosomal biology and exploring potential therapeutic targets. The review entitled “Exploring lysosomal biology: current approaches and methods” was published on Biophysics Reports (published on January, 2024).



Journal

Biophysics Reports

DOI

10.52601/bpr.2023.230028

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Exploring lysosomal biology: current approaches and methods

Article Publication Date

1-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

ACSS1’s Crucial Role in Mammary Development Explored

ACSS1’s Crucial Role in Mammary Development Explored

October 15, 2025
Tiny Regenerative Worm Offers Breakthrough Insights into Healing, New Study Reveals

Tiny Regenerative Worm Offers Breakthrough Insights into Healing, New Study Reveals

October 15, 2025

New Study Reveals How Aligning Drug Dosing with Circadian Rhythms Can Enhance Treatment Effectiveness

October 15, 2025

Examining Gender Disparities in COVID-19 Mortality

October 15, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1246 shares
    Share 498 Tweet 311
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Low HSP27 and HSP70 Linked to Laryngeal Cancer Risk

Enhancing Hospital Efficiency Through System Dynamics Research

Metabolic Syndrome Trends in Iranian Diabetic Patients

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.