• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Oceanographers uncover the vital role of mixing down of oxygen in sustaining deep sea health

Bioengineer by Bioengineer
April 12, 2024
in Chemistry
Reading Time: 3 mins read
0
Bangor University's research vessel, the Prince Madog
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research led by oceanographers from the School of Ocean Sciences at Bangor University has shown for the first time the important role of the ‘mixing down’ of oxygen in maintaining healthy conditions in the deep waters around the UK and elsewhere.

Bangor University's research vessel, the Prince Madog

Credit: Bangor University

New research led by oceanographers from the School of Ocean Sciences at Bangor University has shown for the first time the important role of the ‘mixing down’ of oxygen in maintaining healthy conditions in the deep waters around the UK and elsewhere.

The groundbreaking research, published today in Nature Communications, demonstrates that the mixing down of oxygen by summer storms is an important process in topping up the deep water oxygen levels in summer, and so in keeping these seas healthy. 

Lead author Professor Tom Rippeth of Bangor University explains, “There is growing concern for the health of our coastal oceans as the climate warms because warmer water holds less oxygen. Living creatures in the ocean are reliant on oxygen to survive in the same way as animals on land are. Oxygen is also used up as rotting matter decomposes in the depths of the ocean. This creates a summer oxygen deficit in the deep seas around the UK. Unfortunately, as our climate warms, this deficit is forecast to grow.”

The formation of stratification in the summer in the deeper water around the UK isolates the deep water from the atmosphere, which is the main source of oxygen.

The research team, from the School of Oceans Sciences at Bangor University, the University of Liverpool and the National Oceanography Centre, used novel new techniques developed at Bangor University to estimate oxygen fluxes in the ocean. These new results show that the mixing down of oxygen by summer storms can slow the development of the deepwater oxygen deficit by as much as 50%.

These new results also have important implications for the proposed mass development of floating wind farms, in places like the Celtic Sea and northern North Sea, in pursuance of NetZero:

“The tidal flow passed from the proposed floating wind turbines will generate a turbulent wake which will mix down oxygen in the summer. This positive impact will improve ocean health. However, this new research highlights the need for the potential impacts of this modified mixing to be considered in the design of turbine foundations and in the spatial planning of new wind farms,” says Professor Rippeth.

The observations were collected as part of the United Kingdom (UK) Natural Environment Research Council (NERC) Carbon and Nutrient Dynamics and Fluxes over Shelf Systems (CaNDyFloSS) project, which forms part of the Shelf Sea Biogeochemistry research programme co-funded by the Department for Environment, Food and Rural Affairs (Defra) through UK Research and Innovation grants.

Read the full paper published by Nature Communications here



Journal

Nature Communications

DOI

10.1038/s41467-024-47548-2

Subject of Research

Not applicable

Article Title

The deepwater oxygen deficit in stratified shallow seas is mediated by diapycnal mixing

Article Publication Date

11-Apr-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Psychedelics Unveil Innovative Therapeutic Approaches for Stress-Related Psychiatric Disorders

Psychedelics Unveil Innovative Therapeutic Approaches for Stress-Related Psychiatric Disorders

October 14, 2025
blank

Scientists Unveil Novel Method to Manipulate Mechanical Vibrations in Metamaterials

October 13, 2025

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1237 shares
    Share 494 Tweet 309
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New AI Tracks Children’s Tiny Movements Accurately

Exploring Touch Avoidance in Autism Spectrum Experiences

Revolutionizing Molecular Design with ED2Mol Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.