• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers from IOCB Prague challenge the limits of molecular memory, opening the door to the development of molecular chips

Bioengineer by Bioengineer
March 26, 2024
in Chemistry
Reading Time: 4 mins read
0
Cover art: Fulgimide photoswitches
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Some molecules respond to external light pulses by changing their structure and holding certain states that can be switched from one to another. These are commonly referred to as photoswitches and usually have two possible states. Recently, however, scientists from the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague) have developed a molecule that takes the possibilities of photoswitches a step further. The new molecule can be switched not between two, but between three distinct states. This gives it the ability to hold much more complex information in its molecular structure than has been possible so far. A paper on the topic, co-authored by PhD student Jakub Copko and Dr Tomáš Slanina, has now been published in the journal Chemical Communications.

Cover art: Fulgimide photoswitches

Credit: Design: Lucie Wohlrábová / IOCB Prague

Some molecules respond to external light pulses by changing their structure and holding certain states that can be switched from one to another. These are commonly referred to as photoswitches and usually have two possible states. Recently, however, scientists from the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague) have developed a molecule that takes the possibilities of photoswitches a step further. The new molecule can be switched not between two, but between three distinct states. This gives it the ability to hold much more complex information in its molecular structure than has been possible so far. A paper on the topic, co-authored by PhD student Jakub Copko and Dr Tomáš Slanina, has now been published in the journal Chemical Communications.

Although scientists had known that similar molecules could enter a third state, they opted not to study it. The reasoning was that they could not maintain control over the transitions between the individual molecular forms and that the presence of a third form only complicated the behaviour of molecules. Now, researchers from the group led by Dr Tomáš Slanina have overcome this obstacle. ‘We are able to precisely and selectively switch molecules between three states as we please,’ says one of the authors of the paper, Jakub Copko.

Structural changes in photoswitches are usually manifested as alterations of their macroscopic properties. When exposed to light of certain parameters, a molecule can, for example, change its colour, which can even be visible to the naked eye. For instance, blue can turn into yellow and vice versa, and the two colours can be treated as zeroes and ones, respectively. Individual molecules thus function in the same way as memory bits and are also easy to read. ‘There is, however, one difference, namely that thanks to their minuscule size they can store an order of magnitude more information than silicon-based chips,’ says Dr Tomáš Slanina, pointing out that: ‘This all works only with photoswitches that are stable enough so as not to switch between individual states spontaneously in the absence of light. It was this very requirement which has so far been so difficult to meet, so experts had never even attempted to achieve a transition into a third state within one molecule. This is only possible thanks to our current discovery.’

Upon the transition from the second state to the third, it is not the colour, but the geometry of the molecule that changes significantly. This is especially convenient whenever it is suitable to ‘shape’ a molecule so that it either fits into a target active centre or, conversely, so that it is pushed out of it. All this is triggered by a light pulse of a specific wavelength. The range of possible practical applications is wide. However, because it is such a recent discovery, experts are only beginning to discover its potential.

Scientists from the Tomáš Slanina Group have been researching photoswitches for a long time. Specifically, they have been focusing on substances known as fulgids, which are being studied by only a handful of laboratories around the world even though they generally have better properties compared to other photoswitches. The reason is straightforward: Their preparation has so far been greatly complicated.

However, Jakub Copko has managed to remove this obstacle, too. He explains: ‘When I started my doctoral studies, it took me up to a month to prepare a single fulgid. Now, thanks to our chemical shortcut, it’s ready in an afternoon.’ He uses what is called a one-pot reaction, which means that all chemical transformations take place in a single flask, eliminating the need to isolate and purify all intermediate products. This not only markedly expedites the preparation but also results in a cleaner reaction with a greater yield and decreases the environmental impact. Tomáš Slanina adds: ‘We are striving to ensure that fulgides are not merely a group of substances that is relegated to the textbooks, but one that receives wider exposure. It can advance the field of photoswitches globally.’ Thanks to the work of his group, the preparation of this type of photoswitches is now so simple that it can be done at any synthetic chemistry lab even without any previous experience with photoswitch chemistry.

Watch the video: https://youtu.be/YHqBjK_xZG4

Original article: Copko J., Slanina T. Multiplicity-driven photochromism controls three-state fulgimide photoswitches. Chem. Commun. 2024. https://doi.org/10.1039/d3cc05975h

IOCB Prague / Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences is a leading internationally recognized scientific institution whose primary mission is the pursuit of basic research in chemical biology and medicinal chemistry, organic and materials chemistry, chemistry of natural substances, biochemistry and molecular biology, physical chemistry, theoretical chemistry, and analytical chemistry. An integral part of the IOCB Prague’s mission is the implementation of the results of basic research in practice. Emphasis on interdisciplinary research gives rise to a wide range of applications in medicine, pharmacy, and other fields.

 



Journal

Chemical Communications

DOI

10.1039/d3cc05975h

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Multiplicity-driven photochromism controls three-state fulgimide photoswitches

Article Publication Date

13-Feb-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.