• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

“Noisy” roundworm brains give rise to individuality

Bioengineer by Bioengineer
March 15, 2024
in Biology
Reading Time: 3 mins read
0
Whole brain snapshot
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Joint research led by Yu Toyoshima and Yuichi Iino of the University of Tokyo has demonstrated individual differences in and successfully extracted commonalities from the whole-brain activity of roundworms. The researchers also found that computer simulations based on the whole-brain activity of roundworms more accurately reflect real-brain activity when they include so-called “noise,” or probabilistic elements. The findings were published in the journal PLOS Computational Biology.

Whole brain snapshot

Credit: Toyoshima et al 2024

Joint research led by Yu Toyoshima and Yuichi Iino of the University of Tokyo has demonstrated individual differences in and successfully extracted commonalities from the whole-brain activity of roundworms. The researchers also found that computer simulations based on the whole-brain activity of roundworms more accurately reflect real-brain activity when they include so-called “noise,” or probabilistic elements. The findings were published in the journal PLOS Computational Biology.

The roundworm Caenorhabditis elegans is a favorite among neuroscientists because its 302 neurons are completely mapped. This gives a fantastic opportunity to reveal their neural mechanism at a systems level. Thus far, scientists have been making progress in revealing the different states and patterns of each neuron and the assemblies they form. However, how these states and patterns are generated has been a less explored frontier.

First, the team of scientists measured the neural activity of each cell that makes up a primitive brain in the roundworms’ head area. To achieve this, the worms were placed in a microfluidic chip, a tiny device designed for worms to be able to “wiggle” backward and forward while keeping them within the field of view of the objective lens. Then, using a confocal microscope, the scientists filmed how the neurons reacted to changes in salt concentrations.

“Although we were able to extract neural “motifs” common among individuals,” Iino says, “we were surprised to find large individual differences in neural activity. Information from sensory neurons is transmitted to “command” neurons through multiple paths to control behavior. Since the neural circuits of C. elegans are thought to be relatively well conserved among individuals, we had assumed that there would be little variation in these paths among individuals. But remarkably, we found the opposite.”

The data derived from these “films” of roundworm brains were then used to create computer simulations of roundworm brains. However, the first simulations that contained only deterministic elements generated decaying “neural” activity. By adding “noise” to the models, the team achieved an accurate representation of the roundworms’ whole-brain activity. The scientists were not only able to estimate the strength of connectivity between neurons but also demonstrated that “noise” is essential to brain activity. This mathematical model could even potentially be applied to analyze neuronal activity in cases where complete connectome data is not yet available.

With such possibilities, the number of exciting, new questions seems infinite. But choose a scientist must.

“We originally designed this study to investigate the neural mechanisms involved when roundworms are attracted to salt,” Iino explains. “However, to measure whole-brain activity, we needed to keep the roundworms in a narrow channel so that they would not move away. We would like to improve the microscope so that we can track freely moving roundworms and analyze whole-brain activity while they are being attracted to salt.”



Journal

PLoS Computational Biology

DOI

10.1371/journal.pcbi.1011848

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Ensemble dynamics and information flow deduction from whole-brain imaging data

Article Publication Date

15-Mar-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.