• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Harnessing the mechanisms of fungal bioluminescence to confer autonomous luminescence in plants and animal cells

Bioengineer by Bioengineer
March 8, 2024
in Biology
Reading Time: 3 mins read
0
Glow in the dark Petunias
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In a striking new study published today in Science Advances, a team of synthetic biologists led by Karen Sarkisyan at the MRC Laboratory of Medical Sciences, have reported the discovery of multiple plant enzymes – hispidin synthases – that can perform the most complex reaction of the bioluminescence pathway. This discovery is a significant milestone towards figuring out whether plants can natively produce all the molecules required for light emission. It also means that the glow of bioluminescent plants can now be more closely aligned with their internal biology.  

Glow in the dark Petunias

Credit: Karen Sarkysian, MRC_LMS

In a striking new study published today in Science Advances, a team of synthetic biologists led by Karen Sarkisyan at the MRC Laboratory of Medical Sciences, have reported the discovery of multiple plant enzymes – hispidin synthases – that can perform the most complex reaction of the bioluminescence pathway. This discovery is a significant milestone towards figuring out whether plants can natively produce all the molecules required for light emission. It also means that the glow of bioluminescent plants can now be more closely aligned with their internal biology.  

The technology reported in the paper is a hybrid pathway that couples the newly found plant hispidin synthases to other necessary bioluminescence enzymes found in mushrooms. This hybrid pathway allows the subtle inner rhythms and dynamics within plants to be unveiled as an ever-changing display of living light. “This technology is a plug-and-play tool to visualise virtually any molecular physiology at the organismal level, completely non-invasively” Sarkisyan states. His work also revealed that not only does a single indigenous plant gene effectively substitute for two fungal genes, the plant gene is notably smaller and has simpler biological requirements for luminescence. The gene’s reduced size also enhances its usability and flexibility, making it more adaptable for extended applications. 

 

This research was sponsored by Light Bio, a plant synthetic biology company co-founded by Sarkisyan, which aims to transform the horticulture industry with beautiful biotech creations, such as glowing plants. The first product to exploit the hispidin-based pathway is Firefly Petunia, so named because its bright light-emitting flower buds resemble fireflies.  

 

Beyond the advances in aesthetics that luminous vegetation may provide to plant-lovers, the foundational science offers profound insights into plant molecular physiology. By enabling continuous monitoring of plant responses to various stresses, such as drought stress or attacks by pests, the technology may lead to significant progress in fields such as crop development and disease resistance.  

 

Sarkysian’s bioluminescence pathway has been replicated in other species including yeast and even in human cells. “We love growing our bioluminescent petunias, they are truly magical. But beyond aesthetics, understanding how we can adapt self-sustained luminescence to monitor disease progression and assist in the screening of drug candidates will make this technology even more impactful”, says Sarkysian. 



Journal

Science Advances

DOI

10.1126/sciadv.adk1992

Method of Research

Experimental study

Subject of Research

Cells

Article Title

A hybrid pathway for self-sustained luminescence

Article Publication Date

8-Mar-2024

COI Statement

This study was partially funded by Light Bio and Planta. The Synthetic biology Group is funded by
the MRC London Institute of Medical Sciences (UKRI MC-A658-5QEA0). Cloning and luminescent assays
performed in BY-2 were partially supported by RSF, project number 22-14-00400,
https://rscf.ru/project/22-14-00400/. Plant transformations were funded by RFBR and MOST, project number
21-54-52004. Plant imaging experiments were funded by RSF, project number 22-74-00124,
https://rscf.ru/project/22-74-00124/. Viral delivery experiments were funded by the grant
PID2019-108203RB-I00 Plan Nacional I+D from the Ministerio de Ciencia e Innovación (Spain) through the
Agencia Estatal de Investigación (co-financed by the European Regional Development Fund).

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.