• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New synchrotron powder diffraction facility for long running experiments

Bioengineer by Bioengineer
February 15, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Claire A. Murray et al

Synchrotron beamlines and their instruments are built to harness the photon beam power of synchrotron radiation (SR), which has special properties – ideally suited to providing detailed and accurate structural information that is difficult to obtain from conventional sources. The common modus operandi for such facilities is that users are allocated a short duration of beamtime, typically a few hours to a few days, in which to perform their experiments.

With technological advances in instrumentation, detection, computing power, automation and remote access, SR facilities are developing new modes of access, designed to increase speed, efficiency and throughput of user experiments, such as on the macromolecular beamlines at Stanford Synchrotron Radiation Light Source in the US and at the Diamond Light Source in the UK.

However, there are a class of experiments that are increasingly excluded by these developments, which nevertheless could greatly benefit from the application of SR. For example, some materials undergo very slow transforming reactions, while others take time to exhibit the effects of curing, ageing or repeated use. These processes can be subtle or take weeks to months or even years to either show gross manifestation or run to completion.

At present off-line processing with before and after SR measurements is the norm, but valuable structural information on growth, change and intermediate phases can be missed or indeed lost. There is therefore a clear need for a facility that allows slow processes to be studied.

In a recently published paper [Murray et al. (2017), J. Appl. Cryst. 50. doi:10.1107/S1600576716019750] scientists report on a new purpose built LDE facility, which has been designed to address the needs of a wide and diverse range of scientific investigations. The new facility takes the form of an additional specially constructed end-station to the existing ultra-high-resolution and time-resolved powder diffraction beamline (I11) at Diamond. The new end-station is dedicated to hosting up to 20 long-term experiments (weeks to years), all running in parallel.

To demonstrate the effectiveness of this new facility, commissioning results from two contrasting science cases are presented. In the first, the slow in situ precipitation of the hydrated magnesium sulfate mineral meridianiite from an aqueous solution was followed. The hydrated phase is believed to be widespread on the surface of Mars and was formed inside a specifically designed low-temperature cell. In the second study, the long term stability of the metal-organic framework material NOTT-300 was investigated. This is a potential supramolecular material for greenhouse gas capture. Initial results show that the facility is capable of detecting phase evolution and detailed structural changes and is well suited for many applied systems and functional materials of interest. The emergence of new science from ongoing experiments is expected soon.

###

Media Contact

Dr. Jonathan Agbenyega
[email protected]
44-124-434-2878
@iucr

http://www.iucr.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Novel Approach Enhances Precision of Machine-Learned Potentials for Catalysis Simulation

Novel Approach Enhances Precision of Machine-Learned Potentials for Catalysis Simulation

September 16, 2025
blank

Rare Einstein Cross Unveiled: Astronomers Detect Fifth Image Uncovering Hidden Dark Matter

September 16, 2025

New Study Reveals the Science Behind Exercise and Weight Loss

September 16, 2025

Prescribed Opioid Painkillers During Pregnancy Unlikely to Raise Autism or ADHD Risk, Study Finds

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Approach Enhances Precision of Machine-Learned Potentials for Catalysis Simulation

Rare Einstein Cross Unveiled: Astronomers Detect Fifth Image Uncovering Hidden Dark Matter

New Study Reveals the Science Behind Exercise and Weight Loss

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.