• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Bright and tough: A material that heals itself and glows

Bioengineer by Bioengineer
February 22, 2024
in Chemistry
Reading Time: 3 mins read
0
Tough and fluorescent self-healing material
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team at the RIKEN Center for Sustainable Resource Science (CSRS) has succeeded in developing a self-healing material that is also capable of emitting a high amount of fluorescence when absorbing light. The research, published in the Journal of the American Chemical Society, could lead the way to the creation of new materials such as organic solar cells that are more durable than current types.

Tough and fluorescent self-healing material

Credit: RIKEN

A research team at the RIKEN Center for Sustainable Resource Science (CSRS) has succeeded in developing a self-healing material that is also capable of emitting a high amount of fluorescence when absorbing light. The research, published in the Journal of the American Chemical Society, could lead the way to the creation of new materials such as organic solar cells that are more durable than current types.

 

In 2019, Zhaomin Hou and his team at RIKEN CSRS successfully copolymerized ethylene and anisylpropylene using a rare-earth metal catalyst. The resulting binary copolymer displayed remarkable self-healing properties against damage. The copolymer’s soft components, alternating units of ethylene and anisylpropylene, coupled with hard crystalline units of ethylene-ethylene chains, acted as physical cross-linking points, forming a nano-phase-separated structure that proved crucial for self-healing.

 

Building upon this success, they incorporated a luminescent unit, styrylpyrene, into a monomer and then formed polymers that also included anisylpropylene and ethylene. This process led to the synthesis, in a single step, of a self-healing material with fluorescence characteristics.

 

“Fluorescent materials are very useful, as they can be used for organic light emitting diodes (OLEDs), organic field-effect transistors (OFETs), and solar cells. One of the main problems of these materials, however, is their short lifetime during usage. Our new material can be expected to afford longer lifetime of the products and increased reliability,” says Masayoshi Nishiura, Hou’s collaborator for this study.

 

There was an added surprise. The resulting copolymer not only proved to be tough, but also exhibited self-healing without external stimuli or energy. Its tensile strength fully recovered within 24 hours, demonstrating a high self-healing speed compared to binary copolymers. The material was able to self-heal even in water, acidic, and alkaline solutions giving it potential uses in a variety of environments.

 

The copolymer’s network structure, which involves physical cross-linking points formed by the styrylpyrene units and crystalline ethylene-ethylene nanodomains and soft segments composed of the alternating units, facilitated the self-repair.

 

The material also showed an added property. The research team was able to successfully transfer a two-dimensional image onto the fluorescent self-healing film through photolithography. Although the image remained invisible under natural light, it became recognizable under ultraviolet light, suggesting potential applications for the film as an information storage device. The film maintained its excellent self-healing and elastomeric properties even with the images.

 

“The material we synthesized, through a one-step reaction, gave us the ability to control its optical and mechanical properties by adjusting the composition of the monomer. We think it could contribute significantly to the development of novel functional materials with high self-healing capabilities in various practical environments,” says Hou. This research aligns with the United Nations’ Sustainable Development Goals (SDGs), particularly contributing to “Goal 12: Ensure sustainable consumption and production patterns.”



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.3c12342

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Synthesis of Tough and Fluorescent Self-Healing Elastomers by Scandium-Catalyzed Terpolymerization of Pyrenylethenylstyrene, Ethylene, and Anisylpropylene

Article Publication Date

18-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.