• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The Radcliffe Wave is waving

Bioengineer by Bioengineer
February 20, 2024
in Chemistry
Reading Time: 4 mins read
0
wave1_black_border
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A few years ago, astronomers uncovered one of the Milky Way’s greatest secrets:  an enormous, wave-shaped chain of gaseous clouds in our sun’s backyard, giving birth to clusters of stars along the spiral arm of the galaxy we call home.

wave1_black_border

Credit: Ralf Konietzka, Alyssa Goodman, and WorldWide Telescope

A few years ago, astronomers uncovered one of the Milky Way’s greatest secrets:  an enormous, wave-shaped chain of gaseous clouds in our sun’s backyard, giving birth to clusters of stars along the spiral arm of the galaxy we call home.

Naming this astonishing new structure the Radcliffe Wave, in honor of the Harvard Radcliffe Institute, where the undulation was originally discovered, the team now reports in Nature that the Radcliffe Wave not only looks like a wave, but also moves like one – oscillating through space-time much like “the wave” moving through a stadium full of fans.

Ralf Konietzka, the paper’s lead author and Ph.D. student at Harvard’s Kenneth C. Griffin Graduate School of Arts and Sciences, explains, “By using the motion of baby stars born in the gaseous clouds along the Radcliffe Wave, we can trace the motion of their natal gas to show that the Radcliffe Wave is actually waving.”

Back in 2018, when University of Vienna professor João Alves was a fellow at Harvard Radcliffe Institute, he worked with Center for Astrophysics researcher Catherine Zucker – then a Ph.D. student at Harvard – and Alyssa Goodman, Robert Wheeler Willson Professor of Applied Astronomy, to map out the 3D positions of the stellar nurseries in the sun’s galactic neighborhood. By combining brand-new data from the European Space Agency’s Gaia mission with the data-intensive “3D Dust Mapping” technique – pioneered by Harvard professor Doug Finkbeiner and his team – they noticed a pattern emerging, leading to the discovery of the Radcliffe Wave in 2020.

“It’s the largest coherent structure that we know of, and it’s really, really close to us,” said Zucker, who describes the collaboration’s work in a related Sky and Telescope article. “It’s been there the whole time. We just didn’t know about it, because we couldn’t build these high-resolution models of the distribution of gaseous clouds near the sun, in 3D.”

The 2020 3D dust map clearly showed that the Radcliffe Wave existed, but no measurements available then were good enough to see if the wave was moving. But in 2022, using a newer release of Gaia data, Alves’ group assigned 3D motions to the young star clusters in the Radcliffe Wave. With the clusters’ positions and motions in hand, Konietzka, Goodman, Zucker and their collaborators were able to determine that the entire Radcliffe Wave is indeed waving, moving like what physicists call a “traveling wave.”

A traveling wave is the same phenomenon we see in a sports stadium when people stand up and sit down in sequence to “do the wave.” Likewise, the star clusters along the Radcliffe Wave move up and down, creating a pattern that travels through our galactic backyard.

Konietzka continued, “Similar to how fans in a stadium are being pulled back to their seats by the Earth’s gravity, the Radcliffe Wave oscillates due to the gravity of the Milky Way.” 

Understanding the behavior of this 9,000 light year-long, gargantuan structure in our galactic backyard, just 500 light-years away from the sun at its closest point, allows researchers to now turn their attention to even more challenging questions. No one yet knows what caused the Radcliffe Wave or why it moves the way it does.

“Now we can go and test all these different theories for why the wave formed in the first place,” Zucker said.

“Those theories range from explosions of massive stars, called supernovae, to out-of-galaxy disturbances, like a dwarf satellite galaxy colliding with our Milky Way”, Konietzka added.  

The Nature article also includes a calculation on how much dark matter might be contributing to the gravity responsible for the wave’s motion. 

“It turns out that no significant dark matter is needed to explain the motion we observe,” Konietzka said. “The gravity of ordinary matter alone is enough to drive the waving of the wave.”

In addition, the discovery of the oscillation raises new questions about the preponderance of these waves both across the Milky Way and other galaxies. Since the Radcliffe Wave appears to form the backbone of the nearest spiral arm in the Milky Way, the waving of the wave could imply that spiral arms of galaxies oscillate in general, making galaxies even more dynamic than previously thought.

“The question is, what caused the displacement giving rise to the waving we see?” Goodman said. “And does it happen all over the galaxy? In all galaxies? Does it happen occasionally? Does it happen all the time?”

The National Science Foundation, NASA, ESA, and the European Research Council  (ERC) Advanced Grant ISM-FLOW supported this work. 



Journal

Nature

DOI

10.1038/s41586-024-07127-3

Method of Research

Data/statistical analysis

Subject of Research

Not applicable

Article Title

The Radcliffe Wave is Oscillating

Article Publication Date

20-Feb-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Engineering Ultra-Stable Proteins via Hydrogen Bonding

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025
Designing DNA for Controlled Charge Transport

Designing DNA for Controlled Charge Transport

November 18, 2025

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

November 17, 2025

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

November 16, 2025

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

RNA Sequencing Sheds Light on Cucumber Fruit Formation

Validating a Chinese Nursing Information Literacy Scale

Empowering Women Physicians: A Comprehensive Review

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.