• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Sweat-analyzing temporary tattoo research funded in NSF grant to UMass Amherst researcher

Bioengineer by Bioengineer
January 25, 2024
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

AMHERST – University of Massachusetts Amherst researchers have received an award to develop a new type of sweat monitor that can be applied to the skin just like a temporary tattoo and assess the molecules present, such as cortisol. The tattoos will ultimately give individuals better insight into their health and serve as a tool for researchers to discover new early indications of diseases. 

hand

Credit: Courtesy of Dmitry Kireev

AMHERST – University of Massachusetts Amherst researchers have received an award to develop a new type of sweat monitor that can be applied to the skin just like a temporary tattoo and assess the molecules present, such as cortisol. The tattoos will ultimately give individuals better insight into their health and serve as a tool for researchers to discover new early indications of diseases. 

 

“There are a lot of vital biomolecules that are present in sweat that we need to measure to really understand overall human performance and correlation to different diseases,” says research lead and assistant professor of biomedical engineering, Dmitry Kireev.  

 

For this initial research stage, Kireev will focus on measuring cortisol, a biomarker associated with stress, stroke, Cushing’s syndrome and the rare chronic condition Addison’s disease. However, he hopes to expand the technology to other compounds, such as glucose, lactate, female hormone estrogen, inflammation markers and many more once the method has been established. 

 

Kireev will use the two-year, nearly $200,000 EArly-concept Grant for Exploratory Research (EAGER) grant from the National Science Foundation to develop these graphene-based tattoos. “It’s almost entirely transparent, exceptionally conductive and it really goes into this perfect contact with the human skin,” he says. “It’s imperceptibly self-adhesive—we don’t apply any adhesive, we literally transfer it on skin.” 

 

Most existing methods for analyzing sweat are time-consuming and labor-intensive, limiting them to a laboratory setting. Kireev’s design is based on a method that is simple enough for lay people to use, not just trained clinicians. “Current sweat analysis that’s typically done is in clinics is using liquid chromatography mass spectroscopy,” he explains. “These are all refrigerator-sized machines that are amazing—they could measure all your sweat—but you need to swab the sweat sample, store and analyze. The process is slow, and cost-ineffective.”  

 

However, a device simple for an individual to use would open the possibilities for future research. “We want to have routine analysis [of these bio analytes] so we don’t only get information about people when they’re sick or when they have the problem, but before it happens,” Kireev says.  

 

He also notes that many people are interested in personally tracking their own health and this technology provides growth in the field of personalized healthcare. For instance, cortisol impacts a person’s circadian rhythm. If a person can track their cortisol over the day, it may shed light on their sleep habits.  

 

This research is the merger of two research tracks. First, is the development of this graphene-based tattoo to function as a passive electrode, measuring electrical activity on the body. Second, is research on graphene-based biosensors that are rigid. “Now, the idea is to combine these two technologies together, functionalizing biomolecules on the graphene surface, and employing human skin and sweat as the intermediary,” Kireev says. 

 

Photo and video assets are available for publication here, courtesy of Kireev. 

 

Contact 

Dmitry Kireev, [email protected] 

Julia Westbrook, [email protected] 413-545-0149 

 



Share12Tweet8Share2ShareShareShare2

Related Posts

α-Synuclein Fibril Structure Drives Parkinson’s Seeding

α-Synuclein Fibril Structure Drives Parkinson’s Seeding

July 31, 2025
Deep-Sea Fish and Ocean Health at Risk as Ocean Oxygen Levels Plummet, New Study Reveals

Deep-Sea Fish and Ocean Health at Risk as Ocean Oxygen Levels Plummet, New Study Reveals

July 31, 2025

SuFEx Antitubercular Irreversibly Blocks Pks13

July 31, 2025

FOXP2 Halts Gastric Cancer by Repressing FBXW2

July 31, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

α-Synuclein Fibril Structure Drives Parkinson’s Seeding

Not All Low-Grade Prostate Cancers Pose Low Risk, Study Finds

Examining the Link Between GLP-1 Receptor Agonists and Nonarteritic Anterior Ischemic Optic Neuropathy Risk in Older Adults with Diabetes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.