• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

USTC reveals the dynamics of bright-dark exciton transition in a semiconductor material

Bioengineer by Bioengineer
January 19, 2024
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team led by Prof. ZHAO Jin and Associate Prof. ZHENG Qijing from University of Science and Technology of China (USTC), in collaboration with Hrvoje Petek, a professor from the University of Pittsburgh, has uncovered the dynamics of bright-dark exciton transition in anatase TiO2. Their findings have been published in Proceedings of the National Academy of Sciences.

USTC Reveals the Dynamics of Bright-Dark Exciton Transition in a Semiconductor Material

Credit: USTC

A research team led by Prof. ZHAO Jin and Associate Prof. ZHENG Qijing from University of Science and Technology of China (USTC), in collaboration with Hrvoje Petek, a professor from the University of Pittsburgh, has uncovered the dynamics of bright-dark exciton transition in anatase TiO2. Their findings have been published in Proceedings of the National Academy of Sciences.

Excitons, quasi-particles formed by the binding of electrons and holes in condensed matter systems via Coulomb interaction, exhibit distinct properties as bright and dark excitons. While bright excitons directly couple with light and play a pivotal role in light absorption, dark excitons, with their relatively longer lifetimes, hold significance in quantum information processing, Bose-Einstein condensation, and light-energy harvesting.

This study, with the help of GW plus the real- time Bethe–Salpeter equation combined with the nonadiabatic molecular dynamics (GW + rtBSE- NAMD), explored the formation dynamics on how the optically excited bright to the strongly bound momentum-forbidden dark excitons in anatase TiO2, a semiconductor material renowned for its exceptional light absorption capabilities and its ability to activate bright excitons under light excitation. In the meantime, due to the material’s indirect band gap nature, bright excitons ultimately relax to the band edges, forming dark excitons.

The bright-dark exciton transition exhibited a novel pathway upon considering many-body effects within the excitons—the interaction between electrons and holes. This revelation unveiled an extended timescale for the transition process, where bright excitons transform into dark excitons within approximately 100 femtoseconds, several times fastaer than previously understood. Crucially, the many-body effects within excitons played a pivotal role during this transition.

This study sheds light on how semiconductor materials’ excitonic dynamics are affected by many-body interactions, offering crucial insights for designing light-based devices and energy materials. It also exemplifies the collaborative efforts and innovative computational approaches in unraveling the intricate dynamics of excitons, paving the way for advancements in material science and technology.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2307671120

Article Title

Ultrafast many-body bright–dark exciton transition in anatase TiO2

Article Publication Date

13-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025
Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025

Innovative Imaging Technique Reveals Elemental Distributions in Frozen Solvents within Nanomaterials

August 1, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    38 shares
    Share 15 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling EMT’s Role in Colorectal Cancer Spread

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.