• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

USC Stem Cell study throws our understanding of gene regulation for a loop

Bioengineer by Bioengineer
January 17, 2024
in Health
Reading Time: 3 mins read
0
Bell and Buster
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The blueprint for human life lies within the DNA in the nucleus of each of our cells. In human cells, around six and a half feet of this genetic material must be condensed to fit inside the nucleus. DNA condensation is not random. To function properly, the genetic material is highly organized into loop structures that often bring together widely separated sections of the genome critical to the regulation of gene activity. In a new paper published in Nature Communications, USC Stem Cell scientists from the laboratory of Oliver Bell address how these loops can help repress or silence gene activity, with potentially far-reaching effects on human health.

Bell and Buster

Credit: Andi Pauli

The blueprint for human life lies within the DNA in the nucleus of each of our cells. In human cells, around six and a half feet of this genetic material must be condensed to fit inside the nucleus. DNA condensation is not random. To function properly, the genetic material is highly organized into loop structures that often bring together widely separated sections of the genome critical to the regulation of gene activity. In a new paper published in Nature Communications, USC Stem Cell scientists from the laboratory of Oliver Bell address how these loops can help repress or silence gene activity, with potentially far-reaching effects on human health.

“A carefully orchestrated regulatory machinery is required to ensure every cell in the body is expressing its correct gene set to exert its dedicated function,” said the study’s first author Daniel Bsteh, who began the research at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), and completed it at the Keck School of Medicine of USC during his PhD. He is currently the Liquid Biopsy Core Manager at the USC Norris Comprehensive Cancer Center.

In the study, Bsteh and his colleagues specifically examined developmental genes that are repressed by molecules known as Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). PRC1 and PRC2 are regulators that prevent developmental genes from becoming activated at the wrong time or in the wrong cell, which has been shown to cause changes in cellular identity, leading to developmental defects, or transformation into cancer cells.

When PRC1- and PRC2-repressed genes come together, the genome forms loops. Loops are known to play a role in activating genes, but it has been more challenging to study how loops might help repress genes. This is because of the interdependence of loops with a different type of gene repressing mechanism known as histone modifications.

Through a genetic screen conducted in mouse embryonic stem cells, the scientists identified a protein, PDS5A, that modifies loops without affecting histone modifications. This enabled Bsteh and colleagues to specifically study the effects of loops and 3D genome organization on gene silencing.

The loss of PDS5A disrupted the loops—and therefore the long-range interactions between repressed developmental genes. Further, looping genes together maintains the silent state. When PRC1- and PRC2-repressed genes are physically separated, eliminating the loops, normally silent genes become activated in aberrant ways.

“PDS5A is a subunit of a larger protein complex called cohesin, which is the master regulator of 3D genome organization,” said Bell, an assistant professor of biochemistry and molecular medicine, and stem cell biology and regenerative medicine, and a member of the USC Norris Comprehensive Cancer Center. “Cohesin mutations are known to drive several human diseases, including developmental disorders and cancer. What’s striking about our discovery is that it reveals a dependence of PRC 1 and PRC 2 activity on the precise regulation of 3D genome organization by cohesin, suggesting that ‘cohesinopathies’ may be linked to aberrant developmental gene silencing.”

Additional authors include Hagar F. Moussa, Georg Michlits, Ramesh Yelagandula, Jingkui Wang, and Ulrich Elling from the IMBA.

Support for this research came from the Austrian Academy of Sciences, the New Frontiers Group of the Austrian Academy of Sciences (grant NFG-05), the Human Frontiers Science Program Career Development Award (CDA00036/2014-C), and startup funding from the USC Norris Comprehensive Cancer Center.

 



Journal

Nature Communications

DOI

10.1038/s41467-023-43869-w

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Loss of cohesin regulator PDS5A reveals repressive role of Polycomb loops

Article Publication Date

9-Dec-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

February 7, 2026

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

February 7, 2026

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.