• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New study aims to unlock secrets of the human brain

Bioengineer by Bioengineer
January 16, 2024
in Health
Reading Time: 3 mins read
0
New study aims to unlock secrets of the human brain
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The inner workings of the human brain are a gradually unraveling mystery and Dr. Richard Naud of the University of Ottawa’s Faculty of Medicine has led a highly compelling new study that brings us closer to answering these big questions. The study’s results have important implications for theories of learning and working memory and could potentially help lead to future developments in artificial intelligence (AI) since AI developers and programmers watch the work of Dr. Naud and other leading neuroscientists.

New study aims to unlock secrets of the human brain

Credit: University of Ottawa

The inner workings of the human brain are a gradually unraveling mystery and Dr. Richard Naud of the University of Ottawa’s Faculty of Medicine has led a highly compelling new study that brings us closer to answering these big questions. The study’s results have important implications for theories of learning and working memory and could potentially help lead to future developments in artificial intelligence (AI) since AI developers and programmers watch the work of Dr. Naud and other leading neuroscientists.

Published in Nature Computational Science, the study tackles the many-layered mystery of the “response variability” of neurons, brain cells that use electric signals and chemicals to process information and greenlights all the remarkable aspects of human consciousness.

The findings unveil the nuts and bolts of how neuronal variability is controlled by dendrites, the antenna that reach out from each neuron to receive synaptic inputs in our own personal neural communication networks. The rigorous study establishes properties of dendrites potently control output variability, a property that’s been shown to control synaptic plasticity in the brain.

“The intensity of a neuron’s response is controlled by inputs to its core, but the variability of a neuron’s response is controlled by the inputs to its little antennas – the dendrites,” says Dr. Naud, an Associate Professor at the Faculty of Medicine’s Department of Cellular and Molecular Medicine and the uOttawa Department of Physics . “This study establishes more precisely how single neurons can have this crucial property of controlling response variability with their inputs.”

Dr. Naud suspected that if a mathematical framework he’d used to describe the cell body of neurons was extended to take their dendrites into account, then they might have luck efficiently simulating networks of neurons with active dendrites.

Cue the contribution of Zachary Friedenberger, a PhD student at the Department of Physics and a member of Dr. Naud’s lab, with a background in theoretical physics to solve the theoretical challenges and the math in a record time. Fast forward to the completed study: The predictions of the model were validated by analysis of in vivo recording data and observed over a wide range of model parameters.

“He managed to solve the math in a record time and solved a number of theoretical challenges I had not foreseen,” Dr. Naud says.

Dr. Naud believed that their technique could provide insight on the neuronal response to variable inputs. So they began working on a technique that would be able to compute statistics from a neuronal model with an active dendrite.

One of the work’s reviewers noted that the theoretical analysis “provides key insight into biological computation and will be of interest to a broad audience of computational and experimental neuroscientists.”



Journal

Nature Computational Science

DOI

10.1038/s43588-023-00580-6

Method of Research

Data/statistical analysis

Subject of Research

Cells

Article Title

Dendritic excitability controls overdispersion

Article Publication Date

27-Dec-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Psilocybin Modulates Brain Circuits to Alleviate Chronic Pain and Depression

October 2, 2025

European Association for the Study of Obesity Endorses Semaglutide and Tirzepatide as First-Line Therapies for Obesity and Its Major Complications

October 2, 2025

Proteotoxic Stress Fuels T Cell Exhaustion, Evasion

October 2, 2025

Comparing Methods to Measure Aggregate PFAS Exposure

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    73 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Psilocybin Modulates Brain Circuits to Alleviate Chronic Pain and Depression

European Association for the Study of Obesity Endorses Semaglutide and Tirzepatide as First-Line Therapies for Obesity and Its Major Complications

Comorbidities Impact Radiotherapy in Elderly Glioma

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.