• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Advancing the generation of in-vivo chimeric lungs in mice using rat-derived stem cells

Bioengineer by Bioengineer
January 5, 2024
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ikoma, Japan – Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. It is marked by lung damage that is lasting and incurable, leaving lung transplantation as the only viable treatment option. Unfortunately, finding suitable lung donors is difficult. To compensate for this shortage of donors, regenerative medicine is making strides in developing lungs from pluripotent stem cells (PSCs), using interspecies animal models.

IMAGE

Credit: Shunsuke Yuri

Ikoma, Japan – Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. It is marked by lung damage that is lasting and incurable, leaving lung transplantation as the only viable treatment option. Unfortunately, finding suitable lung donors is difficult. To compensate for this shortage of donors, regenerative medicine is making strides in developing lungs from pluripotent stem cells (PSCs), using interspecies animal models.

Through a biological technique known as blastocyst complementation, PSCs, and embryonic stem cells (ESCs) from one species can be injected into blastocysts of a different organ-deficient species, creating interspecies chimeric animals. This technique has enabled successful regeneration of the pancreas, heart, and kidney in rat-mouse chimeras. However, functional lung formation has still not been achieved successfully, warranting further research into the viable conditions required to generate PSC-derived organs.

Now, scientists from Nara Institute of Science and Technology (NAIST), Japan have used the reverse-blastocyst complementation (rBC) method to understand the conditions required to form lungs in rat-mouse chimeric models. In addition, they used the tetraploid-based organ complementation (TOC) method to successfully create a rat-derived lung in their mouse model. The study, published in Development, was led by Shunsuke Yuri and Ayako Isotani from NAIST.

The fibroblast growth factor 10 (Fgf10) and its interaction with the Fgf receptor 2 isoform IIIb (Fgfr2b) in the lungs are crucial for lung development. In this study, the rBC method involved injecting mutant ESCs which fail to show lung formation into wild-type (WT) embryos. This method allows for efficient detection of mutant PSCs in the recipient tissue, aiding the determination of the conditions necessary for successful lung formation in the organ-deficient animal.

The research team also found that WT ESCs provide uniform contributions across target and non-target organs in the chimeras. This helped ascertain that a certain number of WT or normal cells are required to overcome the lung development failure in Fgf10-deficient or Fgfr2b-deficient animals.

With this knowledge, they successfully produced rat-derived lungs in the Fgfr2b-deficient mouse embryos with the TOC method, without needing to produce a mutant mouse line. “Interestingly, we found that the rat epithelial cells conserved intrinsic species-specific timing in the interspecies model, resulting in an underdeveloped lung,” notes Yuri. Consequently, these lungs remained nonfunctional post-birth.

The findings of this study clearly identify the factors required and barriers to overcome for successful generation of functional lungs in rat-mouse interspecies chimeras. Speaking of the significance of these findings, Yuri concludes, “We believe that our study makes an important contribution to the literature by presenting a faster and more efficient method of exploring blastocyst complementation. These novel results can significantly advance the progress toward developing in-vivo chimeric lungs for the purpose of transplantation, which could transform the practical application of regenerative medicine.”

###

Resource

Title: Generation of rat-derived lung epithelial cells in Fgfr2b-deficient mice retains species-specific development

Authors: Shunsuke Yuri, Yuki Murase, Ayako Isotani

Journal: Development

DOI: 10.1242/dev.202081

More information about the Organ Developmental Engineering Lab can be found at the following website: https://bsw3.naist.jp/eng/courses/courses214.html

 

About Nara Institute of Science and Technology (NAIST)

Established in 1991, Nara Institute of Science and Technology (NAIST) is a national university located in Kansai Science City, Japan. In 2018, NAIST underwent an organizational transformation to promote and continue interdisciplinary research in the fields of biological sciences, materials science, and information science. Known as one of the most prestigious research institutions in Japan, NAIST lays a strong emphasis on integrated research and collaborative co-creation with diverse stakeholders. NAIST envisions conducting cutting-edge research in frontier areas and training students to become tomorrow’s leaders in science and technology.



Journal

Development

DOI

10.1242/dev.202081

Article Title

Generation of rat-derived lung epithelial cells in Fgfr2b-deficient mice retains species-specific development

Share12Tweet8Share2ShareShareShare2

Related Posts

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

September 19, 2025
blank

Collaboration with Kenya’s Turkana Community Uncovers Genes Behind Desert Adaptation

September 18, 2025

Cracking the Code of the Selfish Gene: From Evolutionary Cheaters to Breakthroughs in Disease Control

September 18, 2025

New Model Enables Precise Predictions of Forest Futures

September 18, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CRISPR-Engineered T Cells: Challenges and Opportunities

Olefin π-Coordination at Low-Oxidation Boron Centers

Targeting Lipid Metabolism to Enhance Antitumor Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.