• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Progress in the investigation of ultrafast electron dynamics using short light pulses

Bioengineer by Bioengineer
January 4, 2024
in Chemistry
Reading Time: 3 mins read
0
Attosecond pulses
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When electrons move within a molecule or semiconductor, this occurs on unimaginably short time scales. A Swedish-German including physicist Dr Jan Vogelsang from the University of Oldenburg has now made significant progress towards a better understanding of these ultrafast processes: The researchers were able to track the dynamics of electrons released from the surface of zinc oxide crystals using laser pulses with spatial resolution in the nanometre range and at previously unattained temporal resolution.

Attosecond pulses

Credit: Image: Jan Vogelsang

When electrons move within a molecule or semiconductor, this occurs on unimaginably short time scales. A Swedish-German including physicist Dr Jan Vogelsang from the University of Oldenburg has now made significant progress towards a better understanding of these ultrafast processes: The researchers were able to track the dynamics of electrons released from the surface of zinc oxide crystals using laser pulses with spatial resolution in the nanometre range and at previously unattained temporal resolution.

With these experiments, the team demonstrated the applicability of a method that could be used to better understand the behaviour of electrons in nanomaterials and new types of solar cells, among other applications. Researchers from Lund University, including Professor Dr Anne L’Huillier, one of last year’s three Nobel laureates in physics, were involved in the study, which was published in the science journal Advanced Physics Research.

In their experiments, the research team combined a special type of electron microscopy known as photoemission electron microscopy (PEEM) with attosecond physics technology. The scientists use extremely short-duration light pulses to excite electrons and record their subsequent behaviour. “The process is much like a flash capturing a fast movement in photography,” Vogelsang explained. An attosecond is incredibly short – just a billionth of a billionth of a second.

Combining two technologically demanding techniques

As the team reports, similar experiments had so far failed to attain the temporal accuracy required to track the electrons’ motion. The tiny elementary particles whizz around much faster than the larger and heavier atomic nuclei. In the present study, however, the scientists were able to combine the two technologically demanding techniques, photoemission electron microscopy and attosecond microscopy, without compromising either the spatial or temporal resolution. “We have now finally reached the point where we can use attosecond pulses to investigate in detail the interaction of light and matter at the atomic level and in nanostructures,” said Vogelsang.

One factor which made this progress possible was the use of a light source that generates a particularly high quantity of attosecond flashes per second – in this case 200,000 light pulses per second. Each flash released on average one electron from the surface of the crystal, allowing the researchers to study their behaviour without them influencing each other. “The more pulses per second you generate, the easier it is to extract a small measurement signal from a dataset,” explained the physicist.

Anne L’Huillier’s laboratory at Lund University (Sweden), where the experiments for the present study were carried out, is one of the few research laboratories worldwide that has the technological equipment required for such experiments. Vogelsang, who was a postdoctoral researcher at Lund University from 2017 to 2020, is currently in the process of setting up a similar experimental laboratory at the University of Oldenburg. In the future, the two teams plan to continue their investigations and explore the behaviour of electrons in various materials and nanostructures.

Vogelsang has headed the Attosecond Microscopy research group at the University of Oldenburg since 2022. The group is funded by the German Research Foundation’s prestigious Emmy Noether Programme.



Journal

Advanced Physics Research

DOI

10.1002/apxr.202300122

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Time-resolved photoemission electron microscopy on a ZnO surface using an extreme ultraviolet attosecond pulse pair

Article Publication Date

3-Dec-2023

COI Statement

The authors declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.