• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists predicted new high-energy compounds

Bioengineer by Bioengineer
February 13, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: MIPT Press Office

Using theoretical methods, an international group of scientists led by Artem R. Oganov, Professor of Skoltech, Stony Brook University and Moscow Institute of Physics and Technology predicted unusual from the point of view of classical chemistry nitrides of hafnium and chromium with the chemical formulae HfN10 (and its zirconium analogue ZrN10) and CrN4. These compounds can be obtained at relatively low pressures and contain high-energy groups of nitrogen atoms. Pure polymeric nitrogen is the ideal high-energy compound that packs so much energy per unit volume or mass that it could be used as a powerful explosive if it were not for gigantic pressures of its synthesis. This work shows that nitrogen polymerizes at much lower pressures in presence of metal ions, and such compounds might find practical use. The authors also predicted a range of new hafnium nitrides as well as nitrides, carbides and borides of chromium, with an unusual combination of properties (high hardness, electrical conductivity, and toughness).

Superhard materials can be divided into two main classes: compounds of boron, carbon, nitrogen and oxygen together and compounds of transition metals with boron, carbon and nitrogen. The scientists studied four systems in two simultaneously published works: hafnium-nitrogen, chromium-nitrogen, chromium-carbon and chromium-boron. Several new materials, which can be formed at relatively low pressure, were predicted. Among them there are materials with an unusual combination of very high hardness and electrical conductivity. In particular, newly predicted carbide Cr2C should even be stable at atmospheric pressure; and researchers were able to resolve for the first time the crystal structure of a known compound Cr2N. The most interesting finding is the chemical compound with the formula HfN10 – here, there are ten nitrogen atoms per hafnium atom. Its structure is very peculiar from a chemical point of view: The hafnium atoms and N2 molecules are sandwiched between infinite chains of nitrogen atoms. Such structure is formed under relatively low pressure of 0.23 Mbar. According to Professor Artem R. Oganov: "This finding brings us back to one of the Holy Grails in material science, the search for polymeric nitrogen, an ideal high-energy-density material".

The fact of the matter is that all good explosive compounds contain nitrogen – at the moment of explosion the nitrogen atoms form the extraordinary stable N2 molecule, releasing a vast amount of energy. The more nitrogen atoms in a compound, and the more unusual their bonding, the more energy will be released as a result of the explosion. Polymeric nitrogen was first predicted by American physicist C. Mailhiot in 1992 and then synthesized in 2004 by Russian physicist Michael Eremets under pressures exceeding one million atmospheres. At such pressures only micron-sized samples can be made, which rules out any practical applications. Professor Oganov says: "Our group works on several projects related to metal polynitrides. This is a promising class of high-energy-density compounds, requiring much lower pressures than pure polymeric nitrogen (e.g., 5 times lower in case of HfN10, or even less for CrN4, and this is likely not the limit). Chemists have long dreamed about synthesising polymeric nitrogen in large quantities. We have proposed the compound class that can fulfil this dream. "

###

Two publications appeared as a result of these studies. The first author of the article published in The Journal of Physical Chemistry Letters is Alexander Kvashnin, a postdoc at Skoltech. The first author of the second article in Physical Review B is Jin Zhang, Oganov's graduate student at Stony Brook University.

The Skolkovo Institute of Science and Technology (Skoltech) is a private graduate research university. Established in 2011 in collaboration with the Massachusetts Institute of Technology (MIT), Skoltech educates global leaders in innovation, advance scientific knowledge, and fosters new technologies to address critical issues facing Russia and the world. Skoltech conducts it work integrating the best practices of the best Russian and international educational and scientific research universities. Moreover, the university pays particular attention to entrepreneurship and innovative education. Website: http://www.skoltech.ru/

Media Contact

Asya Shepunova
[email protected]
7-916-813-0267
@phystech

https://mipt.ru/english/

############

Story Source: Materials provided by Scienmag

Share13Tweet8Share2ShareShareShare2

Related Posts

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.