• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UTA research tagged as “hot article” in Green Chemistry journal

Bioengineer by Bioengineer
December 20, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Editors and reviewers of the peer-reviewed journal Green Chemistry have highlighted a University of Texas at Arlington study investigating how to make common chemical techniques more environmentally friendly as one of its “hot” articles for 2023.

Daniel W. Armstrong, the Welch Distinguished Professor of Chemistry and Biochemistry

Credit: Courtesy UT Arlington

Editors and reviewers of the peer-reviewed journal Green Chemistry have highlighted a University of Texas at Arlington study investigating how to make common chemical techniques more environmentally friendly as one of its “hot” articles for 2023.

UTA scientists led by Daniel W. Armstrong, the Welch Distinguished Professor of Chemistry and Biochemistry, found that using carbonated water in chromatography makes this relatively common chemical technique more environmentally benign.

A technique that works by taking a mixture and separating it to examine the individual components, chromatography is widely used to test athletes’ urine for performance-enhancing drugs, analyze crime scene evidence such as blood and cloth, test the ingredients in food, or measure the amount of alcohol in drinks, among many other uses. A single chromatograph produces about a liter of liquid waste, with some major pharmaceutical companies operating more than 1,000 chromatographic studies per day.

Using carbonated water in chromatography can reduce the technique’s Analytical Method Greenness Score (AMGS). The smaller the score, the more environmentally friendly the process is, Armstrong said.

“Our research shows that the use of simple carbonated water plus minimal mathematical processing and optimal column geometries produces the lowest AMGS scores yet reported,” Armstrong said. “This shows that switching to carbonated liquids instead of other liquids when possible will help make the process of chromatography safer for the environment.”

The team also found that using carbonated liquids is just as fast and efficient as other liquids used in chromatography.

“Using 38 amino acids as a test class of molecules, the utility of carbonated liquids as a green alternative was presented at speeds, efficiencies and resolutions never reported,” Armstrong said. “Future work will involve applying what we learned regarding carbonated liquids in chromatography to other methodologies, such as mass spectrometry.”

This study also corrected the original AMGS equation and extended it to cover more realistic separations including chiral amino acids. The research also noted that this same approach would be useful for NASA, which has special interests in developing lightweight and small instruments for extraterrestrial in situ chiral/achiral chemical analysis.

Coauthors include M. Farooq Wahab, a research engineering scientist, as well as two students: Troy T. Handlovic and Bailey C. Glass. Handlovic received a Bachelor of Science in chemistry and Master of Science in pharmaceutical chemistry from Fairleigh Dickinson University in Madison, New Jersey, before coming to UTA to pursue his doctoral degree. Glass, who is from Arlington, is a sophomore undergraduate research assistant studying biochemistry with plans to continue studying chemistry in graduate school.



Journal

Green Chemistry

DOI

10.1039/D3GC03005A

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Optimization of analytical method greenness scores: a case study of amino acid enantioseparations with carbonated aqueous systems

Article Publication Date

17-Oct-2023

COI Statement

The Robert A. Welch Foundation (Y-0026) is gratefully acknowledged for financially supporting this work.

Share12Tweet8Share2ShareShareShare2

Related Posts

Breakthrough Techniques Elevate Graphene to Unmatched Electronic Excellence, Surpassing Semiconductor Boundaries

Breakthrough Techniques Elevate Graphene to Unmatched Electronic Excellence, Surpassing Semiconductor Boundaries

August 28, 2025
Alkali Metal Cations Direct ORR Selectivity at M-N4 Active Sites

Alkali Metal Cations Direct ORR Selectivity at M-N4 Active Sites

August 28, 2025

Chung-Ang University Scientists Uncover Unusual Behaviors in Nanoparticle Growth and Shrinkage

August 28, 2025

Breakthrough Self-Assembling Material Paves the Way for Fully Recyclable EV Batteries

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Genetic Diversity in Extra-Early Orange Maize

Boosting Acidic Sandy Soil with Nutrient-Rich Biochars

Porphyrin Conjugates: Innovative Drug Delivery Solutions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.