• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Department of Defense grant boosts study of pressure, humidity on thermal energy storage

Bioengineer by Bioengineer
December 15, 2023
in Chemistry
Reading Time: 2 mins read
0
DOD grant A&M Engineering 2023
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Under the Defense University Research Instrumentation Program, Dr. Patrick Shamberger and a research team from the Department of Materials Science and Engineering received a grant from the U.S. Department of Defense (DOD) to acquire instrumentation for thermal energy storage research.

DOD grant A&M Engineering 2023

Credit: Texas A&M Engineering

Under the Defense University Research Instrumentation Program, Dr. Patrick Shamberger and a research team from the Department of Materials Science and Engineering received a grant from the U.S. Department of Defense (DOD) to acquire instrumentation for thermal energy storage research.

The grant, administered through the Office of Naval Research, will support the acquisition of a high-sensitivity multi-modal calorimeter for advanced research and education on tunable energy storage materials. This equipment will allow cutting-edge research to study the capability of pressure and humidity to control how well these materials can store thermal energy.

Advancements in system power density have led to lighter and smaller components, but they’ve also brought about significant challenges in managing heat. To handle thermal loads efficiently without oversizing components like pumps and heat exchangers, there’s a growing focus on dynamic thermal properties and components. This includes exploring tunable thermal conductivity, switches, diodes, rectifiers, and emissivity. However, there’s a critical gap in understanding regarding materials with dynamically tunable heat capacity or latent heat storage effects.

The newly awarded instrumentation system stands out as an exceptional calorimetry system. It promises unparalleled sensitivity and adaptability, enabling material analysis across a wide temperature range (minus 120 to 830 degrees Celsius), various pressures, humidity levels (up to 90% at 70 degrees Celsius), and diverse carrier gases, encompassing both adsorptive (carbon dioxide, water vapor) and reactive gases (like hydrogen).

This system is poised to serve as the cornerstone for developing groundbreaking adaptive materials that align with the needs of the DOD in the next decade. It will especially aid in creating dynamically tunable phase change materials. Additionally, this system opens doors for a range of fundamental research programs. It fosters the training of a skilled workforce ready to engage in research and development activities essential for the defense sector’s advancements.

Members of the team include Drs. Ibrahim Karaman, Raymundo Arroyave, Emily Pentzer and Svetlana Sukhishvili from the Department of Materials Science and Engineering at Texas A&M University, and Dr. Neera Jain from the School of Mechanical Engineering at Purdue University.

By Jan McHarg, Texas A&M Engineering

###



Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.