• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists from IOCB Prague are pushing the limits of DNA

Bioengineer by Bioengineer
November 9, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The team of Professor Michal Hocek at IOCB Prague explores the limits of the structure and function of DNA and successfully pushes forward known boundaries. An article presenting the results of their latest research has just been published in the major scientific journal Nucleic Acids Research. They prove that even heavily modified double helices of DNA are stable enough to be used for special applications. This discovery might expand the possibilities of utilizing modified DNA, for example, in medicine.

Prof. Michal Hocek

Credit: Photo: Tomáš Belloň / IOCB Prague

The team of Professor Michal Hocek at IOCB Prague explores the limits of the structure and function of DNA and successfully pushes forward known boundaries. An article presenting the results of their latest research has just been published in the major scientific journal Nucleic Acids Research. They prove that even heavily modified double helices of DNA are stable enough to be used for special applications. This discovery might expand the possibilities of utilizing modified DNA, for example, in medicine.

DNA consists of two long negatively charged chains that hold together even though they repel each other. This is made possible by what is known as stacking interactions and base pairing. Michal Hocek and his colleagues advanced the known limits when they modified DNA by adding an extra negative charge to each letter of the genetic code. This doubled the repulsive forces, yet the DNA double helix remained stable. They also found that such modified DNA not only holds together but that it can also be synthesized or replicated and sequenced using the enzyme DNA polymerase.

‘Think of DNA as a scaffold on which you can attach various chemical compounds with different functions. These are small molecules, such as side chains of amino acids, which occur naturally only in peptides and proteins. In current medicine, we are able to use these molecules only to a relatively limited extent. The reason is that they are markedly unstable and get decomposed rapidly when inside an organism. One solution to this would be a stable skeleton to which they could be firmly attached. And DNA could be just such a base structure in the future,’ says Prof. Michal Hocek.

The aim of this research carried out at IOCB Prague is to create DNA molecules that will mimic other chemical compounds. This would enable us to leverage the medicinal potential of certain biomolecules that are difficult to retain in the body. Examples of such biomolecules are the already mentioned peptides or proteins.

The Hocek group has already made significant progress, although research in this direction is at its beginning worldwide. The team has, for example, succeeded at developing a novel modified aptamer, which is a short DNA sequence that can bind to a specific target molecule, most frequently a protein. Aptamers have similar properties to antibodies, but they are much more stable. For this reason, aptamers can potentially replace antibodies employed in medicine. However, the number of approved therapeutic aptamers globally can still be counted on the fingers of one hand.

The current research exploring the limits of DNA is part of a larger project led by Michal Hocek, for which he has secured a prestigious EXPRO grant from the Czech Science Foundation. This is the second time its results have drawn interest from the journal Nucleic Acids Research. Previously, scientists from IOCB Prague published a method for the enzymatic synthesis of fully artificial DNA. During this synthesis, all nucleotides forming natural DNA are replaced by their modified versions with attached hydrophobic (i.e. water-repelling) molecules.

Original article: Kuprikova, N.; Ondruš, M.; Bednárová, L.; Riopedre-Fernandez, M.; Slavětínská, Lenka P.; Sýkorová, V.; Hocek, M. Superanionic DNA: enzymatic synthesis of hypermodified DNA bearing four different anionic substituents at all four nucleobases. Nucleic Acids Res. 2023, gkad893. https://doi.org/10.1093/nar/gkad893
 

The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences / IOCB Prague (www.uochb.cz) is a leading internationally recognized scientific institution whose primary mission is the pursuit of basic research in chemical biology and medicinal chemistry, organic and materials chemistry, chemistry of natural substances, biochemistry and molecular biology, physical chemistry, theoretical chemistry, and analytical chemistry. An integral part of the IOCB Prague’s mission is the implementation of the results of basic research in practice. Emphasis on interdisciplinary research gives rise to a wide range of applications in medicine, pharmacy, and other fields.



Journal

Nucleic Acids Research

DOI

10.1093/nar/gkad893

Method of Research

Experimental study

Article Title

Superanionic DNA: enzymatic synthesis of hypermodified DNA bearing four different anionic substituents at all four nucleobases

Article Publication Date

23-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    137 shares
    Share 55 Tweet 34
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Qingbu Weijing Decoction: Promising Bronchiectasis Treatment Study

Assessing Measurement Invariance in Canadian Youth Eating Scale

Integrating Health Evidence into Lebanon’s Electoral Platforms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.