• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Making electric vehicles last

Bioengineer by Bioengineer
November 2, 2023
in Chemistry
Reading Time: 3 mins read
0
Figure 1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the realm of electric vehicles, powered by stored electric energy, the key lies in rechargeable batteries capable of enduring multiple charge cycles. Lithium-ion batteries have been the poster child for this application. However, due to limitations in energy storage capacity and other associated challenges, the focus has shifted to an intriguing alternative known as dual-ion batteries (DIBs).

Figure 1

Credit: POSTECH

In the realm of electric vehicles, powered by stored electric energy, the key lies in rechargeable batteries capable of enduring multiple charge cycles. Lithium-ion batteries have been the poster child for this application. However, due to limitations in energy storage capacity and other associated challenges, the focus has shifted to an intriguing alternative known as dual-ion batteries (DIBs).

 

Dual-ion batteries utilize both lithium cations and counter anions simultaneously, offering a high energy density akin to traditional batteries. This allows them to store a substantial amount of energy. However, they face a hurdle due to the larger anions, causing expansion and contraction of the graphite anode material during charge and discharge, which can lead to decreased battery durability.

 

In a recent breakthrough, a collaborative research team tackled the durability issues of dual-ion batteries through innovative polymer binder research. The team included Professor Soojin Park (Department of Chemistry), alongside PhD candidates Jieun Kang (Department of Chemistry) and Jinwoo Hwang (Department of Chemical Engineering) from Pohang University of Science and Technology (POSTECH), Professor Jeong Woo Han (Materials Science and Engineering) from Seoul National University, and Professor Ja-Hyoung Ryu (Department of Chemistry) and Ph.D. student Seungho Lee (Department of Chemistry) from Ulsan National Institute of Science and Technology (UNIST), and Professor Jaegeon Ryu (Department of Chemical and Biomolecular Engineering) from Sogang University. The findings from this study were published in Advanced Materials.

 

The binder plays a critical role in securing various chemicals within rechargeable batteries. In this study, the research team introduced a novel polymer binder that incorporates azide groups (N3-) and acrylate groups (C3H3O2).

 

Azide groups form a robust covalent bond with graphite through a chemical reaction facilitated by ultraviolet light, ensuring the structural integrity of graphite during its expansion and contraction. Meanwhile, acrylate groups facilitate the reconnection between the graphite and the binder, even if the bond is disrupted.

 

Experimental results showed that dual-ion batteries equipped with the newly developed binder maintained exceptional performance, even after enduring over 3,500 recharge cycles. These batteries also demonstrated swift charging capabilities, with about 88% of the original capacity being restored within just 2 minutes.

 

Professor Soojin Park, the driving force behind the research, explained, “Dual-ion batteries are not only cost-effective but also leverage Earth’s abundant graphite resources. This research will stimulate further exploration of dual-ion batteries, extending beyond electric vehicles to various other applications.”

 

Importantly, this research was made possible with support from the Mid-Career Researcher Program and the C1 Gas Refinery Program of the National Research Foundation of Korea (NRF) under the Ministry of Science and ICT, as well as the Basic Science Research Program (Doctoral Program Research Grant) of the NRF under the Ministry of Education of Korea.



Journal

Advanced Materials

DOI

10.1002/adma.202306157

Article Title

Azacyclic Anchor-Enabled Cohesive Graphite Electrodes for Sustainable Anion Storage

Article Publication Date

31-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025
Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1230 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Efficient Matrix Solving with Resistive RAM Technology

Chemical Dimerization Inhibits GSDMD-Driven Pyroptosis

Dana-Farber Leads Phase 3 Trials for Breast, Lung, and Bladder Cancer Unveiled at ESMO Congress 2025

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.