• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Auxin signaling pathway controls root hair formation for nitrogen uptake

Bioengineer by Bioengineer
September 11, 2023
in Biology
Reading Time: 3 mins read
0
Arabidopsis thaliana responds to nitrogen deficiency by forming longer root hairs
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Plants have evolved diverse adaptive strategies to optimize the exploration of light and soil resources from their environments. One of the most prominent adaptive responses is the developmental plasticity of their root systems, which enables plants to efficiently forage nutrient pools that fluctuate in space and time. As a crucial component determining the active root surface, root hairs represent a powerful morphological trait to improve water and nutrient acquisition. Root hairs are extensions of epidermal cells that effectively enlarge the root surface area and facilitate soil exploration for water and nutrients. Root hair development starts with cell fate specification, which determines whether an epidermal cell becomes a hair-forming cell (trichoblast) or a hairless cell (atrichoblast).

Arabidopsis thaliana responds to nitrogen deficiency by forming longer root hairs

Credit: IPK Leibniz Institute

Plants have evolved diverse adaptive strategies to optimize the exploration of light and soil resources from their environments. One of the most prominent adaptive responses is the developmental plasticity of their root systems, which enables plants to efficiently forage nutrient pools that fluctuate in space and time. As a crucial component determining the active root surface, root hairs represent a powerful morphological trait to improve water and nutrient acquisition. Root hairs are extensions of epidermal cells that effectively enlarge the root surface area and facilitate soil exploration for water and nutrients. Root hair development starts with cell fate specification, which determines whether an epidermal cell becomes a hair-forming cell (trichoblast) or a hairless cell (atrichoblast).

“In our study, we first showed that nitrogen deficiency strongly stimulates root hair elongation in the model species Arabidopsis thaliana and that this response is crucial for plant fitness under low nitrogen”, explains Prof. Dr. Nicolaus von Wirén, head of the department “Physiology and Cell Biology” at IPK Leibniz Institute. “And we then integrated transcriptomics, molecular genetics and cell biology approaches to establish that low nitrogen-induced root hair elongation builds on a spatially coordinated auxin signaling cascade that enters the root hair developmental program via the epidermal transcriptional module RHD6–LRL3.”

 

The signaling cascade consists of three stages. Through upregulation of the enzymes TAA1 and YUCCA8, low nitrogen increases auxin accumulation in the root apex (step 1, synthesis). Auxin is then directed shootward to the root hair differentiation zone via the transporters AUX1 and PIN2 (step 2, transport). Upon arrival, auxin activates the transcription factors ARF6 and ARF8 to promote the transcriptional module RHD6–LRL3, which is confined to the epidermis and steers root hair elongation in response to low nitrogen (step 3, signaling).

 “Overall, our results suggest that root hair elongation represents an additional systemically-induced foraging response strategy to explore the soil for nitrogen, gaining even more relevance as nitrogen deficiency becomes more severe”, says Dr. Zhongtao Jia, first author of the study. “These findings add a new feature to our understanding of root foraging responses in low-nutrient environments and expand the mechanistic framework of hormone-regulated nutrient sensing in plant roots.”

Since more abundant and longer root hairs represent a low-cost strategy for plants to bring roots in contact with soil nutrients, understanding how root hair development is regulated by nitrogen provides new breeding targets for developing crops with enhanced nitrogen-uptake efficiency.



Journal

Current Biology

DOI

10.1016/j.cub.2023.08.040

Article Title

A spatially-concerted epidermal auxin signaling framework steers the root hair foraging response under low nitrogen

Article Publication Date

11-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Coral Grouper Genome Reveals Eupercaria Evolutionary Insights

Coral Grouper Genome Reveals Eupercaria Evolutionary Insights

September 26, 2025

Mammalian Hibernator-Derived Cholangiocyte Organoids Enhance Liver Cold Preservation: New Insights

September 26, 2025

When Mom and Dad’s DNA Don’t Match, the Embryo Adapts

September 26, 2025

Saskatoon Berry: Nutrition, Phytochemicals, Benefits, Shelf-Life, Uses

September 26, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    80 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    55 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

University of Phoenix Unveils New White Paper on Microservices: Enhancing Student-Employer Confidence Through Skill Development

Advances in Prostate Cancer Treatment: Targeted Radioactive Therapy, Innovative SBRT Techniques, and 5DCT-Guided Imaging Breakthroughs

Researchers from the University of Cincinnati Cancer Center Showcase Radiation Oncology Advances at National Conference

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.