• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Drug approvals in clinical trials were correlated with the cells/humans discrepancy in gene perturbation effects

Bioengineer by Bioengineer
September 8, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Developing new drugs is paramount in discovering innovative treatments and preventing diseases. This is vital not only for advancing medicine but also for the overall health and well-being of humanity. Yet, even when drugs demonstrate safety and efficacy in cell and animal models, they frequently encounter hurdles in clinical trials on human.

Figure 1

Credit: POSTECH

Developing new drugs is paramount in discovering innovative treatments and preventing diseases. This is vital not only for advancing medicine but also for the overall health and well-being of humanity. Yet, even when drugs demonstrate safety and efficacy in cell and animal models, they frequently encounter hurdles in clinical trials on human.

 

A single setback for a drug during clinical trials, which involves diverse population groups, can result in significant economic losses. To address this, it is imperative to understand why certain drugs, despite passing the preclinical stages, falter during clinical trials. Additionally, there’s a pressing need to predict a given drug’s chances for approval in clinical trial.

 

Recently, a research team led by Professor Sanguk Kim (Department of Life Sciences, School of Convergence Science and Technology) and PhD candidate Minhyuk Park (Department of Life Sciences) at Pohang University of Science and Technology (POSTECH) used machine learning to achieve success in predicting potential drug outcomes and side effects before the clinical trials begin. Their findings were published in EBioMedicine, a part of The Lancet Discovery Science.

 

Drugs are primarily tested on cell lines and animal models prior to human clinical trial. However, the observed drug efficacy or toxicity might vary because of the discrepancies in how drug target genes function and are expressed in cells as opposed to humans. Neglecting this discrepancy can lead to severe, unanticipated side effects in actual patients, diverging from lab findings.

 

In their research, the researchers focused on the discrepancy in drug effects between cells and humans. To evaluate the discrepancy to predict drug approval (1404 approved and 1070 unapproved drugs), they analyzed CRISPR-Cas9 knockout and loss-of-function mutation rate-based gene perturbation effects on cells and humans, respectively. To validate the risk of drug targets with the cells/humans discrepancy, they examined the targets of failed and withdrawn drugs due to safety problems.

 

Leveraging this knowledge, they developed a machine learning approach to forecast drug approvals in clinical trials. The conventional approaches typically utilize a drug’s chemical properties, omitting the genetic differences between cells and humans. This team, however, integrated both chemical and genetic strategies, refining the accuracy of their drug safety and success predictions.

 

The study’s lead investigator, Professor Sanguk Kim, explained, “The challenges of drug development rose from the absence of reliable methods for predicting clinical trial outcomes in humans. I hope our research enables us to effectively predict drug approval possibilities, substantially reducing shorten the time and expenses associated with drug development.”



Journal

EBioMedicine

DOI

10.1016/j.ebiom.2023.104705

Article Title

Drug approval prediction based on the discrepancy in gene perturbation effects between cells and humans

Article Publication Date

13-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Groundbreaking Discovery Ignites New Hope for Breathing Recovery Following Spinal Cord Injuries

Groundbreaking Discovery Ignites New Hope for Breathing Recovery Following Spinal Cord Injuries

August 14, 2025
Breakthroughs in N-Type Thermoelectric Elastomers

Breakthroughs in N-Type Thermoelectric Elastomers

August 14, 2025

65LAB Grants $1.5 Million to Duke-NUS Platform to Propel Antifibrotic Drug Discovery

August 14, 2025

Single-Atom Fe Boosts Acidic Oxygen Reduction

August 14, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Compound Targets Survival Mechanisms in Aromatase Inhibitor-Resistant Breast Cancer Cells

Groundbreaking Discovery Ignites New Hope for Breathing Recovery Following Spinal Cord Injuries

Scientists Return to Fundamentals with Streamlined Plant Genomes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.