• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Powerful imaging technology used to investigate renal disease

Bioengineer by Bioengineer
August 17, 2023
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chandra Mohan, Hugh Roy and Lillie Cranz Cullen Endowed Professor of biomedical engineering, is reporting the first use of the powerful imaging mass cytometry (IMC) to examine the kidneys of patients with lupus (systemic lupus erythematosus), an autoimmune disease that can affect multiple organs and become fatal, and to diagnose lupus nephritis (LN) in those patients.  

Chandra Mohan, University of Houston Hugh Roy and Lillie Cranz Cullen Endowed Professor of biomedical engineering

Credit: University of Houston

Chandra Mohan, Hugh Roy and Lillie Cranz Cullen Endowed Professor of biomedical engineering, is reporting the first use of the powerful imaging mass cytometry (IMC) to examine the kidneys of patients with lupus (systemic lupus erythematosus), an autoimmune disease that can affect multiple organs and become fatal, and to diagnose lupus nephritis (LN) in those patients.  

LN is a severe inflammation of the kidneys and a major cause of death in lupus patients. Up to 60% of SLE patients will develop renal symptoms with 5–20% of those patients progressing to end stage kidney disease within 10 years. 

IMC can showcase the presence of as many as 37 different proteins in human tissue simultaneously and marks a significant leap beyond the limitations of the traditional approach, which allowed the examination of only 1-3 distinct proteins within a specific tissue. Often in combination with machine learning algorithms, IMC has been used to characterize the cellular makeup of the human kidney, distinguish between cell types and identify novel markers for disease.  

“Due to unique advantages that allow high-dimensional tissue profiling, we postulated imaging mass cytometry may shed novel insights on the molecular makeup of proliferative lupus nephritis,” reports Mohan in the journal Clinical Immunology. “This study interrogates the expression profiles of 50 target proteins in lupus nephritis and control kidneys.” 

Currently, the standard for LN diagnosis is a painful renal biopsy and study of the tissues that are taken out to determine disease outcome and treatment response.  

“However, there is low inter-pathologist concordance when determining classes and pathology indices which can lead to misclassification of LN, improper disease treatment, and sub-optimal patient outcomes,” said Mohan. “Renal biopsies also provide a limited amount of tissue, restricting the type and extent of analysis that can be performed on a sample.” 

There are several major advantages to IMC including its ability to pinpoint locations of tissues for further study.  During the IMC research and examination of 21 patients, Mohan found both decreased and increased disease markers that point to renal disease and that a subset of glomeruli, (the tiny network of blood vessels that work as cleaners of the kidney) may be enlarged in some LN patients. 

“Decreased expression of epithelial markers along with an increased expression of mesenchymal markers, also termed epithelial to mesenchymal plasticity (EMP) have been reported in kidney biopsies from patients with renal diseases, including LN,” said Mohan. “It is very likely that the parietal epithelial cells encircling the glomeruli may be an additional site of EMP in proliferative LN, though this needs to be verified using additional markers. EMP could certainly affect additional cells in LN kidneys, but this needs to be systematically investigated.” 

The studies were carried out by postdoctoral fellow Crosslee Titus, together with Mohan’s team at UH. Also involved in the research are teams led by Shu-Hsia Chen, Houston Methodist Research Institute; Minghui Zhao, Peking University First Hospital, Beijing, PR China; and Anthony Chang, The University of Chicago. 



Journal

Clinical Immunology

Article Title

Molecular architecture of proliferative lupus nephritis as elucidated using 50-plex imaging mass cytometry proteomics

Article Publication Date

27-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Epicardial Fat: Protector or Threat to Heart Health?

July 26, 2025
blank

Glymphatic Asymmetry Linked to Parkinson’s Onset Side

July 26, 2025

Theta Stimulation Boosts Conflict Resolution in Parkinson’s

July 26, 2025

Faecal Transplants Show Safety in Parkinson’s Pilot

July 26, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    51 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.