• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Correlation between neutron pairs observed in helium-8 nuclei

Bioengineer by Bioengineer
August 2, 2023
in Chemistry
Reading Time: 3 mins read
0
Correlation between neutron pairs in helium-8 nuclei
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Atomic nuclei consist of nucleons such as protons and neutrons, which are bound together by nuclear force or strong interaction. This force allows protons and neutrons to form bound states; however, when only two neutrons are involved, the attractive force is slightly insufficient to create such a state. This prompts the question: would four neutrons be adequate? This question has captivated atom physicists, who have actively sought to unlock this mystery in both the theoretical and experimental realms.

Correlation between neutron pairs in helium-8 nuclei

Credit: Wataru Horiuchi, Osaka Metropolitan University

Atomic nuclei consist of nucleons such as protons and neutrons, which are bound together by nuclear force or strong interaction. This force allows protons and neutrons to form bound states; however, when only two neutrons are involved, the attractive force is slightly insufficient to create such a state. This prompts the question: would four neutrons be adequate? This question has captivated atom physicists, who have actively sought to unlock this mystery in both the theoretical and experimental realms.

With weakly bound nuclei, in which there is no strong attraction from the center, considering two neutrons as a single unit is essential for understanding four-neutron correlations. Therefore, a research team led by Associate Professor Wataru Horiuchi and Professor Naoyuki Itagaki, from the Osaka Metropolitan University Graduate School of Science, focused on the possibility of enhanced correlations between the two neutron pairs that comprise the four extra neutrons in the helium isotope 8He. (8He contains two protons and a total of six neutrons.) The team performed extensive quantum mechanics equation calculations and successfully demonstrated the existence of dineutron-dineutron clusters distributed around the 4He core before showing the arrangement these clusters take.

Professor Horiuchi stated, “Nuclei with an imbalance of protons and neutrons, such as in 8He, do not naturally exist on Earth but are believed to be generated abundantly in cosmic environments, such as in stars, through the process of nucleosynthesis. Our results provide new insights into the still largely unknown binding forms of neutrons and deepen our understanding of the origins of the elements around us.”

Their findings were published in Physical Review C (Letter).

 

###

About OMU 

Osaka Metropolitan University is the third largest public university in Japan, formed by a merger between Osaka City University and Osaka Prefecture University in 2022. OMU upholds “Convergence of Knowledge” through 11 undergraduate schools, a college, and 15 graduate schools. For more research news, visit https://www.omu.ac.jp/en/ or follow us on Twitter: @OsakaMetUniv_en, or Facebook. 



Journal

Physical Review C

DOI

10.1103/PhysRevC.108.L011304

Method of Research

Computational simulation/modeling

Article Title

Dineutron-dineutron correlation in 8He

Article Publication Date

18-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.