• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A demonstration of substituent effects in anti-aromatic compounds

Bioengineer by Bioengineer
July 27, 2023
in Chemistry
Reading Time: 3 mins read
0
Demonstration of Substituent Effects in Anti-aromatic Compounds
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Circularly conjugated compounds with 4n+2 pi-electrons are known as aromatic compounds. They are generally stable and are therefore found in our surroundings. On the other hand, anti-aromatic compounds with 4n pi-electrons have been conventionally considered unstable, and the creation of stable anti-aromatic compounds has been one of the challenging issues in organic chemistry. Several studies on the synthesis, isolation, and characterization of stable and clearly anti-aromatic compounds have been reported in recent years. In general, anti-aromatic compounds are considered to be more susceptible to substituents than aromatic compounds because of their narrower HOMO-LUMO gap. However, there has been no systematic study of such substituent effects in anti-aromatic compounds.
   This research group has been conducting studies on the synthesis and properties of hexapyrrolohexaazacoronene (HPHAC), a nitrogen-containing polycyclic aromatic compound consisting of pyrrole. Furthermore, homoHPHAC, a pi-extended analog of HPHAC, was reported to show global anti-aromaticity as a monocation and global aromaticity as a trication. In this study, a new synthetic method for homoHPHACs using Friedel-Crafts-type intramolecular condensation reactions was developed, and a series of compounds with electron-donating to electron-accepting substituents were synthesized. The effects of substituents on structural, optical, redox, and antiaromatic (aromatic) properties were demonstrated. In conjunction with computational chemistry, it was shown that both anti-aromatic (monocation) and aromatic (tricationic) properties were the strongest in compounds with electron-accepting substituents.
   Various approaches to the use of organic compounds as electronic materials are being investigated from the viewpoints of reducing environmental impact and providing versatility in functional control. The attempt to control electronic properties by introducing substituents into anti-aromatic compounds is expected to provide new design guidelines for molecular materials.

Demonstration of Substituent Effects in Anti-aromatic Compounds

Credit: Masayoshi Takase(Ehime University)

Circularly conjugated compounds with 4n+2 pi-electrons are known as aromatic compounds. They are generally stable and are therefore found in our surroundings. On the other hand, anti-aromatic compounds with 4n pi-electrons have been conventionally considered unstable, and the creation of stable anti-aromatic compounds has been one of the challenging issues in organic chemistry. Several studies on the synthesis, isolation, and characterization of stable and clearly anti-aromatic compounds have been reported in recent years. In general, anti-aromatic compounds are considered to be more susceptible to substituents than aromatic compounds because of their narrower HOMO-LUMO gap. However, there has been no systematic study of such substituent effects in anti-aromatic compounds.
   This research group has been conducting studies on the synthesis and properties of hexapyrrolohexaazacoronene (HPHAC), a nitrogen-containing polycyclic aromatic compound consisting of pyrrole. Furthermore, homoHPHAC, a pi-extended analog of HPHAC, was reported to show global anti-aromaticity as a monocation and global aromaticity as a trication. In this study, a new synthetic method for homoHPHACs using Friedel-Crafts-type intramolecular condensation reactions was developed, and a series of compounds with electron-donating to electron-accepting substituents were synthesized. The effects of substituents on structural, optical, redox, and antiaromatic (aromatic) properties were demonstrated. In conjunction with computational chemistry, it was shown that both anti-aromatic (monocation) and aromatic (tricationic) properties were the strongest in compounds with electron-accepting substituents.
   Various approaches to the use of organic compounds as electronic materials are being investigated from the viewpoints of reducing environmental impact and providing versatility in functional control. The attempt to control electronic properties by introducing substituents into anti-aromatic compounds is expected to provide new design guidelines for molecular materials.



Journal

Chemical Science

DOI

10.1039/D2SC07037E

Article Publication Date

6-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Decision-Making in Dementia Caregivers’ Mobility

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.