• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Enhancing image quality with broadband achromatic and polarization-insensitive metalenses

Bioengineer by Bioengineer
July 25, 2023
in Chemistry
Reading Time: 3 mins read
0
Metalenses that reduce chromatic aberrations by focusing light of different wavelengths at the same point through a strategic orthogonal or parallel arrangement of the nanofins, NF1 and NF2, composed of a phase change material.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Precise control of light is a crucial requirement in optical imaging, sensing, and communication. Traditional lenses employed for the purpose have limitations, necessitating more precise and compact solutions. To address this need, researchers have developed metalenses, ultrathin lenses constructed from nanomaterials that are smaller in size than the wavelength of light. These sub-wavelength elements provide the means to manipulate light waves with exceptional precision, facilitating a precise control of the amplitude, phase, polarization, and direction of light waves.

Metalenses that reduce chromatic aberrations by focusing light of different wavelengths at the same point through a strategic orthogonal or parallel arrangement of the nanofins, NF1 and NF2, composed of a phase change material.

Credit: Tian et al., doi 10.1117/1.APN.2.5.056002

Precise control of light is a crucial requirement in optical imaging, sensing, and communication. Traditional lenses employed for the purpose have limitations, necessitating more precise and compact solutions. To address this need, researchers have developed metalenses, ultrathin lenses constructed from nanomaterials that are smaller in size than the wavelength of light. These sub-wavelength elements provide the means to manipulate light waves with exceptional precision, facilitating a precise control of the amplitude, phase, polarization, and direction of light waves.

Moreover, compared to bulky lenses, metalenses are easier to produce and are ideal for miniaturized and highly integrated optical devices. However, the sub-wavelength elements also make them susceptible to chromatic aberration. This is a condition where when light passes through a metalens, each wavelength undergoes a different phase shift upon interaction with the sub-wavelength structures. As a result, the various colors or wavelengths of light do not converge at the same point, leading to a loss of focus and reduced image quality.

Now, in a new study published in Advanced Photonics Nexus, researchers have presented a novel approach for creating broadband achromatic and polarization-insensitive metalenses (BAPIML). Their approach leverages the Rayleigh criterion for spot resolution, a fundamental principle in optics used to define the minimum resolvable detail in an imaging system. “The scientific and technical advances reported are notable as they offer a path towards resolving chromatic aberration in metasurfaces, a challenge that has hindered progress in the field,” points out journal editor Professor Alex Krasnok from Florida International University.

According to the Rayleigh criterion for spot resolution, closely spaced point sources can be resolved when the center of the diffraction pattern produced by one point source falls on the first minimum of the diffraction pattern of another point source. When the diffraction patterns approach this limit, the two points become indistinguishable from each other. This principle has been instrumental in designing telescopes and microscopes to distinguish celestial objects and capture the minutest details in tiny specimens, respectively. In this study, the researchers ingeniously applied this concept to develop instead two complementary metalenses that merge the bright spots into a single, focused spot.

They fabricated the two metalenses using nanofins made of a phase change material, Ge2Sb2Se4Te1. These nanofins were arranged in orthogonal or parallel orientations with respect to each other and designed to introduce a phase shift in the light passing through them. One of the nanofins acted as a half-wave plate for a wavelength of 4 µm, while the other served as a half-wave plate for a wavelength of 5 µm.

The metalenses, when illuminated by light, produce two distinct bright spots focused on different positions. However, by carefully adjusting the parameters, such as the radius and focal length of the metalenses, the researchers managed to merge the bright spots into a single focusing spot with an efficiency of up to 43 percent. Simply put, the lenses counteracted chromatic aberrations by focusing light of different wavelengths at the same point.

Finally, the researchers demonstrate the versatility of their approach by generating a broadband achromatic and polarization-insensitive focusing optical vortex. “Put simply, this work signifies that we are on the path towards creating lenses that can better handle light without distortion, and can potentially improve a variety of optical applications,” says Prof. Krasnok.

This new method for developing BAPIML opens doors to a wide range of improved imaging and optical applications, including molecular sensing, bioimaging, detectors, and holographic displays.

Read the Gold Open Access article by Tian et al., “Differentiated design strategies toward broadband achromatic and polarization-insensitive metalenses,” Adv. Photon. Nexus 2(5) 056002 (2023), doi 10.1117/1.APN.2.5.056002.



Journal

Advanced Photonics Nexus

DOI

10.1117/1.APN.2.5.056002

Article Title

Differentiated design strategies toward broadband achromatic and polarization-insensitive metalenses

Article Publication Date

22-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover Temperature’s Key Role in RhRu₃Ox Performance During Acidic Water Oxidation

November 6, 2025
Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

Breakthrough Hyperspectral Camera Captures First Precise Altitude Map of Blue Aurora

November 6, 2025

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025

Kono Honored with American Physical Society’s Isakson Prize

November 5, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeting FSP1 Induces Ferroptosis in Lung Cancer

Body Fat Levels Crucial for Peak Performance in Professional Soccer Players, Finds Brazilian Study

Scientists Discover Temperature’s Key Role in RhRu₃Ox Performance During Acidic Water Oxidation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.