• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sea snakes may have evolved to see colors again

Bioengineer by Bioengineer
July 12, 2023
in Biology
Reading Time: 3 mins read
0
Hydrophis cyanocinctus
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new paper in Genome Biology and Evolution, published by Oxford University Press, finds that the annulated sea snake, a species of venomous snake found in ocean waters around Australia and Asia, appears to have evolved to see an extended palette of colors after its ancestors lost that ability in response to changing environments.

Hydrophis cyanocinctus

Credit: Chris Mitchell/ Genome Biology and Evolution

A new paper in Genome Biology and Evolution, published by Oxford University Press, finds that the annulated sea snake, a species of venomous snake found in ocean waters around Australia and Asia, appears to have evolved to see an extended palette of colors after its ancestors lost that ability in response to changing environments.

Color vision in animals is primarily determined by genes called visual opsins. While there have been multiple losses of opsin genes during the evolution of tetrapods (the group including amphibians, reptiles, and mammals), the emergence of new opsin genes is extremely rare. Before this study, the only evolution  of new opsin genes within reptiles appeared to have occurred in species of  Helicops, a genus of snake from South America.

This study used published reference genomes to examine visual opsin genes across five ecologically distinct species of elapid snakes. The history of elapids, a family of snakes that includes cobras and mambas in addition to the annulated sea snake, presents an opportunity to investigate the molecular evolution of vision genes. Early snakes had lost two visual opsin genes during their dim-light burrowing phase and could only perceive a very limited range of colors. However, some of their descendants now occupy brighter environments; two elapid lineages have even moved from terrestrial to marine environments within the last 25 million years.

Researchers here found that the annulated sea snake possesses four intact copies of the opsin gene SWS1. Two of these genes have the ancestral ultraviolet sensitivity, and two have evolved a new sensitivity to the longer wavelengths that dominate ocean habitats. The study’s authors believe that this sensitivity may provide the snakes with better color discrimination to distinguish predators, prey and/or potential mates against colorful marine backgrounds. This is dramatically different from the evolution of opsins in mammals like bats, dolphins, and whales during ecological transitions; they experienced further opsin losses as they adapted to dim-light and aquatic environments.

 “The earliest snakes lost much of their ability to see color due to their dim-light burrowing lifestyle,” said the paper’s lead author Isaac Rossetto. “However, their sea snake descendants now occupy brighter and more spectrally-complex marine environments. We believe that recent gene duplications have dramatically expanded the range of colors sea snakes can see. For reference, us humans have a similarly expanded sensitivity to colors, while cats and dogs are partially color-blind much like those early snakes.”

The paper, “Functional Duplication of the Short-Wavelength-Sensitive Opsin in Sea Snakes: Evidence for Reexpanded Colour Sensitivity Following Ancestral Regression,” is available (at midnight on July 12th) at: https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evad107.

Direct correspondence to:

Isaac Rossetto
PhD Candidate – Sea Snake Evolution
The University of Adelaide
North Terrace, Adelaide, South Australia 5005, AUSTRALIA
[email protected]

To request a copy of the study, please contact:
Daniel Luzer 
[email protected]



Journal

Genome Biology and Evolution

DOI

10.1093/gbe/evad107

Method of Research

Content analysis

Subject of Research

Animals

Article Title

Functional Duplication of the Short-Wavelength-Sensitive Opsin in Sea Snakes: Evidence for Reexpanded Colour Sensitivity Following Ancestral Regression

Article Publication Date

12-Jul-2023

COI Statement

N/A

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.