• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Making the most of minuscule metal mandalas

Bioengineer by Bioengineer
June 22, 2023
in Chemistry
Reading Time: 2 mins read
0
The 'speciation atlas' enables researchers to accurately determine the expected structure and behaviour of common POMs for any chemical conditions.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

To unveil the previously elusive behavior and stability of complex metal compounds found in aqueous solutions called ‘POMs’, researchers at the University of Vienna have created a speciation atlas now published in Science Advances. This achievement has the potential to drive new discoveries and advancements in fields like catalysis, medicine, and beyond.

The'speciation atlas' enables researchers to accurately determine the expected structure and behaviour of common POMs for any chemical conditions.

Credit: Annette Rompel

To unveil the previously elusive behavior and stability of complex metal compounds found in aqueous solutions called ‘POMs’, researchers at the University of Vienna have created a speciation atlas now published in Science Advances. This achievement has the potential to drive new discoveries and advancements in fields like catalysis, medicine, and beyond.

Metal atoms can form tiny 3d structures with oxygen, intricate frameworks that look not unlike wire mandalas and that are called ‘polyoxometalates’, or ‘POMs’ for short. These POMs are useful for controlling chemical reactions in chemistry, biology, or material science, but also are relevant for understanding natural processes in these fields. However, like wire mandalas, their structure is highly variable and depends on minute changes in their environment, making it very difficult for researchers to predict their structure and thus their function for various applications, from medicine to environmental remediation.

Nadiia Gumerova and Annette Rompel from the Faculty of Chemistry at the University of Vienna have now developed a so-called ‘speciation atlas’, a cheat sheet that allows researchers to accurately ascertain the expected structure and behaviour of ten commonly used POMs for any given chemical condition. More specifically, this atlas is a database including a predictive model that can be extended to other than the ten selected POMs, that will yield POM species distributions, stability and catalytic activity considering the factors pH, temperature, incubation time, buffer solutions, reducing or chelating agents, and ionic strength.

To further support future research, Gumerova and Rompel have also developed a ‘roadmap’ for other scientists conducting experiments with their own POMs: By selecting stable POM variants, listing the application system parameters and then conducting so-called ‘POM speciation studies’ – experiments that reveal the change of POM structure under a change of conditions – researchers can ensure that they are getting the most accurate results and make the best use of POMs in their work.

“The speciation atlas for POMs represents a significant advancement in our understanding of these complex metal compounds. Its insights have the potential to drive new discoveries and advancements in catalysis, biology, medicine, and beyond,” states Annette Rompel.



Journal

Science Advances

DOI

10.1126/sciadv.adi0814

Article Title

Speciation atlas of polyoxometalates in aqueous solutions

Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

Poly-L-Histidine-Coated Nanoparticles for Targeted Doxorubicin Delivery

Revolutionary Ion Exchange Membranes for Arsenic Removal

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.