• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Human Brain Project study offers insights into neuroreceptor organization

Bioengineer by Bioengineer
June 19, 2023
in Chemistry
Reading Time: 3 mins read
0
A new mapping of cortical receptors
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A key challenge in neuroscience is to understand how the brain can adapt to a changing world, even with a relatively static anatomy. The way the brain’s areas are structurally and functionally related to each other – its connectivity – is a key component. In order to explain its dynamics and functions, we also need to add another piece to the puzzle: receptors. Now, a new mapping by Human Brain Project (HBP) researchers from the Forschungszentrum Jülich (Germany) and Heinrich-Heine-University Düsseldorf (Germany), in collaboration with scientists from the University of Bristol (UK), New York University (USA), Child Mind Institute (USA), and University of Paris Cité (France) made advances on our understanding of the distribution of receptors across the brain.

A new mapping of cortical receptors

Credit: Sean Froudist-Walsh, Nicola Palomero-Gallagher

A key challenge in neuroscience is to understand how the brain can adapt to a changing world, even with a relatively static anatomy. The way the brain’s areas are structurally and functionally related to each other – its connectivity – is a key component. In order to explain its dynamics and functions, we also need to add another piece to the puzzle: receptors. Now, a new mapping by Human Brain Project (HBP) researchers from the Forschungszentrum Jülich (Germany) and Heinrich-Heine-University Düsseldorf (Germany), in collaboration with scientists from the University of Bristol (UK), New York University (USA), Child Mind Institute (USA), and University of Paris Cité (France) made advances on our understanding of the distribution of receptors across the brain.

The findings were published in Nature Neuroscience, and the data is now freely available to the neuroscientific community via the HBP’s EBRAINS infrastructure.

The HBP team used autoradiography to analyse the density of receptors for neurotransmitters on very thin in vitro brain sections. They measured the density of 14 neurotransmitter receptor types in 109 areas of the macaque cortex and this data was integrated with multiple structural parameters into neuroimaging templates.

Neurotransmitter receptors

Receptors are key molecules in signal transmission in the brain. Within a neuron, information transmission occurs via electric signals along the axon. But transfer of information between neurons usually requires the release of molecules called neurotransmitters into the extracellular space and their binding to receptors on the target neuron.

The HBP researchers have uncovered a primary and a secondary gradient of receptor expression per neuron. In other words, they mapped receptor densities across the cortex and were able to identify two main arrangements, shedding light on the links between molecular and neuron organization of the cortex. “These two major axes of receptor organisation in the macaque cortex align with two different functional systems, namely the sensory-cognitive and the external-internal cognition networks. This is the first time that such an association has been described,” explains Nicola Palomero-Gallagher, researcher at the Forschungszentrum Jülich and senior author of the paper.

Integrating maps

In their study, the researchers integrated the new neurotransmitter receptor data with multiple layers of anatomical and functional data onto a common cortical space within the cortical surface of Yerkes19, a frequently used non-human primate template. Few studies so far had integrated in vitro anatomy and in vivo imaging of the macaque brain. Creating openly-accessible maps of receptor expression across the cortex that integrate neuroimaging data, such as what was done by the HBP team, could speed up translation across species.

“It is being made freely available to the neuroscientific community so that they can be used by other computational neuroscientists aiming to create other biologically informed models,” Palomero-Gallagher says. Part of the data generated for this study has already been implemented in a computational model of how dopamine gates information into the frontoparietal working-memory network.

Text by Helen Mendes



Journal

Nature Neuroscience

DOI

10.1038/s41593-023-01351-2

Article Title

Gradients of neurotransmitter receptor expression in the macaque cortex

Article Publication Date

19-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.