• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Discovery slows down muscular dystrophy

Bioengineer by Bioengineer
May 24, 2023
in Health
Reading Time: 2 mins read
0
Ashok Kumar, University of Houston
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of researchers at the University of Houston College of Pharmacy is reporting that by manipulating TAK1, a signaling protein that plays an important role in development of the immune system, they can slow down disease progression and improve muscle function in Duchenne muscular dystrophy (DMD). 

Ashok Kumar, University of Houston

Credit: University of Houston

A team of researchers at the University of Houston College of Pharmacy is reporting that by manipulating TAK1, a signaling protein that plays an important role in development of the immune system, they can slow down disease progression and improve muscle function in Duchenne muscular dystrophy (DMD). 

DMD, caused by mutations in dystrophin gene, is an inheritable neuromuscular disorder that occurs in one out of 3,600 male births. DMD patients undergo severe muscle wasting, inability to walk and eventually death in their early thirties due to respiratory failure. The disease is marked by an inflammatory response and death of muscle fibers. Eventually, the muscle fibers are replaced with fat and fibrotic tissue that causes severe muscle weakness.   

“Our results suggest that TAK1 (transforming growth factor β-activated kinase1) is a regulator of skeletal muscle mass. By specifically targeting this protein, we can suppress the death of muscle fibers, known as myonecrosis, and slow down disease progression in DMD,” said Ashok Kumar, Else and Philip Hargrove Endowed Professor and chair, Department of Pharmacological and Pharmaceutical Sciences, whose results were published in JCI Insight. “Our research shows that activating TAK1 can stimulate myofiber growth in a model of DMD, with no negative impact on muscle health.” 

In a previous breakthrough, Kumar’s team uncovered a surprising fact: TAK1 is essential for maintaining skeletal muscle mass and that activating TAK1 beyond normal levels can enhance skeletal muscle growth.  

For this research, supported by the National Institutes of Health, the team designed experiments to reduce or augment the levels of TAK1 protein in skeletal muscle at different stages of disease progression. 

“Our experiments demonstrate that depletion of TAK1 activity during peak necrotic phase followed by re-introduction of TAK1 at post-necrotic phase leads to substantial improvement in muscle pathology,” said Anirban Roy, research assistant professor. 

The current standard of care for DMD is focused on reducing inflammation with corticosteroids, which modestly reduces disease progression, but has serious side effects.  

“Accumulating evidence suggests that regulation of immune response, autophagy, and metabolism along with gene correction therapy can be promising approaches to slow down disease progression in DMD patients,” said Roy. 



Journal

JCI Insight

Article Title

Targeted regulation of TAK1 counteracts dystrophinopathy in a DMD mouse model

Article Publication Date

18-Apr-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.