• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Diamond cut precision: University of Illinois to develop diamond sensors for neutron experiment and quantum information science

Bioengineer by Bioengineer
April 13, 2023
in Chemistry
Reading Time: 3 mins read
0
Diamond cut precision: Beck to develop diamond sensors for neutron experiment and quantum information science
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The nuclear physics group at the University of Illinois Urbana-Champaign is looking for evidence of new physics in neutrons, electrically neutral particles that hold atomic nuclei together with an interaction called the strong force. Faculty and researchers are participating in the nEDM experiment at Oak Ridge National Laboratory which will measure the neutron’s electric dipole moment, a property that allows neutrons to interact with electric fields despite their neutrality. A precise measurement will constrain theories extending the current standard model of particle physics. To achieve this, the researchers must accurately measure subtle changes in very strong electric fields.

Diamond cut precision: Beck to develop diamond sensors for neutron experiment and quantum information science

Credit: The Grainger College of Engineering at the University of Illinois Urbana-Champaign

The nuclear physics group at the University of Illinois Urbana-Champaign is looking for evidence of new physics in neutrons, electrically neutral particles that hold atomic nuclei together with an interaction called the strong force. Faculty and researchers are participating in the nEDM experiment at Oak Ridge National Laboratory which will measure the neutron’s electric dipole moment, a property that allows neutrons to interact with electric fields despite their neutrality. A precise measurement will constrain theories extending the current standard model of particle physics. To achieve this, the researchers must accurately measure subtle changes in very strong electric fields.

Professor of Physics Douglas Beck has been awarded a grant from the Department of Energy to develop sensors based on nitrogen vacancy diamond, a material whose quantum properties at low temperatures make it unusually sensitive to electric fields. His research group has shown that the material can measure strong electric fields, and the award will allow the researchers to construct sensors ready to use in the nEDM experiment. In addition, the material’s quantum properties make it a promising candidate for quantum information science. The researchers will also explore these potential applications.

Beck explained that chemically added nitrogen vacancy, or NV, impurities give diamond unusual electric field sensitivity. “These impurities are regions with an extra nitrogen atom and a hole [or vacancy] where carbon atoms normally would be,” he said. “When the material is cooled to less than 20 degrees above absolute zero, the impurities form a quantum system that responds to electric fields. This is quite an unusual characteristic because not many systems respond to electric fields, and that makes NV diamond special.”

The NV system can be made even more sensitive when it is prepared in a particular quantum state. Instead of letting the system stay in its lowest energy state after they cool it, the researchers form a quantum superposition of the lowest and next-lowest energy states called a dark state, so named because it does not interact with light. “In a sense, the name is meant to suggest that it’s immune to interactions with the environment,” Beck said. “Because it is long lived, it has a very sharply defined energy that very accurately tells us how big the electric field is.”

Beck’s group has demonstrated that this phenomenon enables NV diamond to measure strong electric fields, and the award will allow the researchers to develop reliable, robust sensors based on it. This will involve packaging sensors into units that readily connect with the lasers used to control them and minimize the effects of background noise. They are also investigating a quantum technique called dynamical decoupling that would allow them to effectively reverse the effects of experimental imperfections, according to Beck. This would make the already-precise electric field measurements even more accurate.

Another goal of the research is to explore proposals for using NV diamond in quantum information science. The dark state’s long lifetime and resilience against environmental noise make it a promising platform for quantum sensing and quantum memory. Many such applications depend on placing quantum systems in squeezed states that possess the minimum uncertainty allowed by the Heisenberg principle. There have been several proposals for creating squeezed states in NV diamond, and Beck’s group will survey their feasibilities.

This work will be supported with $650,000 over three years awarded by the Quantum Horizons initiative in the Department of Energy’s Nuclear Physics program.



Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.