• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

WVU researchers receive $5.5M to examine methane emissions at oil and gas sites

Bioengineer by Bioengineer
March 28, 2023
in Chemistry
Reading Time: 4 mins read
0
Energy stairs
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Over the next three years, researchers with the West Virginia University Center for Alternative Fuels, Engines and Emissions will try to gain a robust understanding of where and why leaks of methane and other gases happen and their effects on local air quality and global climate. 

Energy stairs

Credit: WVU Photo

Over the next three years, researchers with the West Virginia University Center for Alternative Fuels, Engines and Emissions will try to gain a robust understanding of where and why leaks of methane and other gases happen and their effects on local air quality and global climate. 

With the support of $5.5 million in U.S. Department of Energy funding, the project, led by Derek Johnson, associate professor at the Benjamin M. Statler College of Engineering and Mineral Resources, will focus on methane emissions — a planet-warming greenhouse gas — from liquid storage tanks across West Virginia, Pennsylvania and Ohio. 

Dubbed STEAM TANKS, Storage Tank Emissions Assessments in the Marcellus to Acquire New Knowledge with Science, the study will measure methane and other volatile organic compounds and hazardous air pollutants emitted from liquid storage tanks located “upstream” at extraction sites as well as “midstream” at various sites along the routes that oil and gas take on their way to refining and processing facilities.  

“Methane is the second most emitted greenhouse gas in the U.S. after carbon dioxide,” Johnson said, adding that methane is also 28 times more potent than carbon dioxide at trapping heat in the atmosphere. Atmospheric methane concentrations have more than doubled over the last 200 years, with gas and petroleum systems constituting the second largest source of U.S. methane emissions after the agriculture sector.  

Natural gas is made up primarily of methane, and when both gas and crude oil are produced, processed, transported and stored, methane emissions may leak into the air, offsetting some of the lower carbon benefits of natural gas. 

Johnson pointed to liquid storage tanks in particular as “complex systems.” Tanks may be vented to the atmosphere or to emissions control devices. They may lose gases when they are drained or filled, he explained, and when they simply “breathe” day in and day out, due to natural changes over time in tank temperature and pressure. And tanks that use control devices may have leaking seals, vents or thief hatches that produce emissions.  

“Tank emissions and leak rates have been highly variable for methane and other volatile organic compounds, so we need a better understanding of their activity. Then we can improve models for predicting emissions and ultimately develop solutions to mitigate them,” Johnson said. 

“We’ll work with site operators to document factors that can contribute to methane emissions: temperatures and pressures, production and throughput, internal chemical composition of liquid and vapor phases, as well as factors such as open or damaged valves, hinges or seals.” 

Once CAFEE has completed an initial regional inventory of oil and gas storage tanks, the team will deploy tools and technologies that range from mobile laboratories for sampling the air to advanced machine learning methods for accurately predicting methane and other emissions over time. In addition to capturing a year of emissions measurements from selected key tanks, the researchers will conduct short-term emissions monitoring at a minimum of 100 sites, each of which may have multiple storage tanks.  

Most will be locations associated with newer unconventional gas production operations, but at least 30 sites focus on conventional operations. The data collected will answer questions such as whether current prediction tools and emissions factors are accurate or representative. 

After acquiring data on conditions and emissions at multiple sites, Johnson and his colleagues will start updating decades-old software models for predicting emissions and begin developing new tools for reporting leaks. 

WVU researchers on the team are Gregory Thompson, associate professor; Scott Wayne, associate professor; Madelyn Ball, assistant professor; Hailin Li, professor and Nigel Clark, professor emeritus and current consultant at Transport Energy Strategies.  

“WVU will leverage the expertise of partner Aerodyne Research in plume sampling,” Johnson said. “Our team is currently partnering with three industry leaders and seeking additional industry participants from across the greater Appalachian basin.” 

Practicality is a priority, so in addition to ensuring the sensors being evaluated would be cost effective for industry to implement, CAFEE will conduct local analyses of how their findings could affect job and training opportunities in communities. If the research shows a need to outfit storage tanks with instruments, Johnson predicted industry may need to invest in an expanded labor force — third-party emissions auditing or reporting companies, for example, or new maintenance and repair technicians. 

“Cutting methane emissions is important — it’s perhaps one of the fastest ways to help curb climate change,” he said. “But there isn’t much research directly quantifying the methane emissions associated with upstream and midstream oil and gas tanks. As an example of how much is unknown, until recently no one was considering one type of tank, the ‘produced water’ storage tank, in terms of methane emissions at all, even though we have shown that emissions from those kinds of tanks may be substantial.” 

Johnson said he believes the project has the potential to generate findings with impact on national and global practices and technologies. 

“This research is pivotal to developing a deeper understanding of tank emissions of methane and other gases, so that industry can develop best practices or deploy technologies for reducing those emissions.” 



Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025
Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1232 shares
    Share 492 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Machine Learning Enhances Flood Risk Assessment in Jiangxi

Disposable Wearable Electrotherapy: Future of Pain Relief

Impact of Antenatal Corticosteroids on Childhood Infectious Diseases: New Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.