• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New study challenges our understanding of the immune system

Bioengineer by Bioengineer
March 10, 2023
in Biology
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A recently published study from Aarhus University may mean a textbook chapter on the immune system will have to be rewritten.

Associate Professor Søren Egedal Degn

Credit: Aarhus University

A recently published study from Aarhus University may mean a textbook chapter on the immune system will have to be rewritten.

In the study, published in the journal Nature Communications, the researchers reveal crucial new knowledge about B cells, which form a vital element in the body’s defence system. B cells are the cells that generate protective antibodies when we are vaccinated or have an infection – and it is also the B cells that produce harmful antibodies in connection with allergies or autoimmune diseases.

The researchers have examined the earliest step in activating the B cells, namely the activation mechanism that is triggered when the cells recognise a specific target or ‘enemy’ – an antigen.

“Previously, it was believed that the antigens from, for example, viruses or vaccines would have to cross-bind a B-cell’s receptors on the cell surface (see illustration). That’s what it says in all the textbooks. But now we have shown that even antigens that can only bind one receptor at a time are able to activate the B cells,” says Søren Degn, associate professor at Department of Biomedicine, who is the senior author of the article.

The discovery is important on several levels, he explains.

“The result is significant because it represents a breakthrough in our understanding of how these important immune cells ‘recognise’ their enemies. Once we understand what is going on, we can imitate it in the design of new vaccines, to ensure maximum effect. One might say that our findings can make us better at mimicking the pathogenic microorganisms, and thus better at provoking or ‘cheating’ the immune system into generating a good immune response when we vaccinate.”

A hotly debated topic in the field

The discovery is interesting for both the immunological field and for cell biology in general, because the researchers have shed new light on the foundation for how receptors on the surface of cells send signals into the cells – a key biological process.

“The study enables us to better understand the background for one of the most important processes in the immune system, and one of the most important processes in cell biology. But it is clear that, in the long term, this could also have important application-oriented aspects,” says Søren Degn.

The researchers have begun preclinical vaccine trials with the aim of translating the findings into clinically relevant vaccine design. They are also attempting to use the same tools in reverse, to target and turn off harmful immune system responses such as allergic reactions and autoimmune diseases.

“When we understand how the B cells are activated, we can create better vaccines. In the slightly longer term, we may also be able to switch off B-cell activation in cases where it is harmful. We are studying both of these in the CellPAT basic research centre at Aarhus University,” says Søren Degn.

For many years, the activation of B cells has been the object of a great deal of discussion among researchers, because the predominant model for how immune recognition takes place could not explain all of the observations.

In the new study, the researchers at the Department of Biomedicine and iNANO in Aarhus, in a cross-disciplinary collaboration with the Max Planck Institute in Munich, have created new tools that make it possible to puncture the predominant model and thereby bury the decades-old paradigm.

“We have shown that the way in which the activation of B cells has been explained over the past thirty or forty years is wrong. This is an important finding, because it opens the door to better vaccines and better treatment of a large group of diseases,” says Søren Degn.

Behind the research results

  • The study consists of ex vivo cell experiments, i.e., in vitro studies of cells from mouse models, nanotechnology and super-resolution microscopy (advanced microscopy).
  • The study is the result of a collaboration between several groups in the Department of Biomedicine at Aarhus University (Degn, Thiel and Vorup-Jensen), iNANO (Kjems) and the Max Planck Institute in Munich (Jungmann). The work stems from the basic research centre CellPAT, the Centre for Cellular Signal Patterns.
  • External funding (main funders only): The Danish National Research Foundation and the Carlsberg Foundation
  • Learn more: Antigen footprint governs activation of the B cell receptor | Nature Communications

Contact

Associate Professor Søren Egedal Degn
Aarhus University, Department of Biomedicine
[email protected]
Mobile: +45 2214 1703



Journal

Nature Communications

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Antigen footprint governs activation of the B cell receptor

Article Publication Date

22-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Processing Environments Shape Food-Related Antibiotic Resistome

July 30, 2025
Multi-Proteomic Analysis Reveals Host Risks in VZV

Multi-Proteomic Analysis Reveals Host Risks in VZV

July 30, 2025

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

July 29, 2025

Ingestible Capsules Enable Microbe-Based Therapeutic Control

July 28, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cutting-Edge Neuromodulation Advances in Parkinson’s Disease

Processing Environments Shape Food-Related Antibiotic Resistome

Multi-Proteomic Analysis Reveals Host Risks in VZV

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.