• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Metasurface enters laser fiber cavity for spatiotemporal mode control

Bioengineer by Bioengineer
February 23, 2023
in Chemistry
Reading Time: 3 mins read
0
Intracavity spatiotemporal modulation using a metasurface strongly coupled to an epsilon-near-zero material.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Metasurfaces are highly versatile for manipulating the amplitude, phase, or polarization of light. During the last decade, metasurfaces have been proposed for a vast range of applications — from imaging and holography to the generation of complex light field patterns. Yet, most optical metasurfaces developed to date are isolated optical elements that work only with external light sources.

Intracavity spatiotemporal modulation using a metasurface strongly coupled to an epsilon-near-zero material.

Credit: Jia, Gao, et al., doi 10.1117/1.AP.5.2.026002

Metasurfaces are highly versatile for manipulating the amplitude, phase, or polarization of light. During the last decade, metasurfaces have been proposed for a vast range of applications — from imaging and holography to the generation of complex light field patterns. Yet, most optical metasurfaces developed to date are isolated optical elements that work only with external light sources.

Despite their versatility for manipulating a light field spatially, most metasurfaces have only a fixed, time-invariant response and a limited ability to control the temporal shape of a light field. To overcome such limitations, researchers are looking into ways to use nonlinear metasurfaces for spatiotemporal light field modulation. However, most materials for constructing metasurfaces have a relatively limited nonlinear optical response on their own.

One solution to the limited nonlinearity of metasurface materials is near-field coupling to a medium with extremely large optical nonlinearity. Epsilon-near-zero (ENZ) materials, an emerging class of materials with vanishing permittivity, have drawn much attention in recent years. For instance, indium tin oxide (ITO), a conductive metal oxide widely used as transparent electrodes in solar cells and consumer electronics, typically has permittivity beyond zero in the near-infrared regime. An ENZ material, with its linear refractive index approaching zero, is endowed with an extremely large nonlinear refractive index and nonlinear absorption coefficient.

As reported in Advanced Photonics, researchers from Tsinghua University and the Chinese Academy of Sciences recently generated laser pulses with tailored spatiotemporal profiles by directly incorporating an ENZ material coupled to a metasurface in a fiber laser cavity.

The researchers used the geometric phase of a metasurface made of spatially inhomogeneous anisotropic metallic nano-antennas to tailor the transverse mode of the output laser beam. The giant nonlinear saturable absorption of the ENZ-coupled system allows pulsed laser generation via a Q-switching process. To provide a prototype, the researchers realized a microsecond pulsed vortex laser with varying topological charges.

This work provides a new route to construct a laser with a tailored spatiotemporal mode profile in a compact form. For further system miniaturization, the metasurface may be integrated on the fiber-end face. According to corresponding author Yuanmu Yang, professor at the Tsinghua University State Key Laboratory of Precision Measurement Technology and Instruments, “We hope that our work may further exploration of metasurface versatility for spatial light field manipulation, with its giant and tailorable nonlinearity for generating laser beams with arbitrary spatial and temporal profiles.” Yang notes that this innovative method may pave the way for the next generation of miniaturized pulsed laser sources, which could be used in various applications, such as light trapping, high-density optical storage, superresolution imaging, and 3D laser lithography.

Read the Gold Open Access article by W. Jia, C. Gao, et al., “Intracavity spatiotemporal metasurfaces,” Adv. Photon. 5(2) 026002 (2023), doi 10.1117/1.AP.5.2.026002.



Journal

Advanced Photonics

DOI

10.1117/1.AP.5.2.026002

Article Title

Intracavity spatiotemporal metasurfaces

Article Publication Date

22-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Menopause Care: Insights from Workforce Review and Consultation

LRRK2R1627P Mutation Boosts Gut Inflammation, α-Synuclein

3D Gut-Brain-Vascular Model Reveals Disease Links

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.