• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

This loofah-inspired, sun-driven gel could purify all the water you’ll need in a day

Bioengineer by Bioengineer
February 8, 2023
in Chemistry
Reading Time: 4 mins read
0
This loofah-inspired, sun-driven gel could purify all the water you’ll need in a day
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Access to clean water is being strained as the human population increases and contamination impacts freshwater sources. Devices currently in development that clean up dirty water using sunlight can only produce up to a few gallons of water each day. But now, researchers in ACS Central Science report how loofah sponges inspired a sunlight-powered porous hydrogel that could potentially purify enough water to satisfy someone’s daily needs — even when it’s cloudy.

This loofah-inspired, sun-driven gel could purify all the water you’ll need in a day

Credit: Adapted from ACS Central Science 2023, DOI: 10.1021/acscentsci.2c01245

Access to clean water is being strained as the human population increases and contamination impacts freshwater sources. Devices currently in development that clean up dirty water using sunlight can only produce up to a few gallons of water each day. But now, researchers in ACS Central Science report how loofah sponges inspired a sunlight-powered porous hydrogel that could potentially purify enough water to satisfy someone’s daily needs — even when it’s cloudy.

Previously, researchers have suggested that sunlight-driven evaporation could be a low-energy way to purify water, but this approach doesn’t work well when it’s cloudy. One solution could be temperature-responsive hydrogels, specifically poly(N-isopropyl acrylamide) (PNIPAm), that switch from absorbing water at cooler temperatures to repelling it when heated. However, conventional PNIPAm gels can’t generate clean water fast enough to meet people’s daily needs because of their closed-off pores. Conversely, natural loofahs, which many people use to exfoliate in the shower, have large, open and interconnected pores. So, Rodney Priestley, Xiaohui Xu, and colleagues wanted to replicate the loofah’s structure in a PNIPAm-based hydrogel, yielding a material that could rapidly absorb water at room temperature, and rapidly release purified water when heated by the sun’s rays under bright or cloudy conditions.

The researchers used a water and ethylene glycol mixture as a uniquely different polymerization medium to make a PNIPAm hydrogel with an open pore structure, similar to a natural loofah. Then they coated the opaque hydrogel’s inner pores with polydopamine (PDA) and poly(sulfobetaine methacrylate) (PSMBA), and tested this material using an artificial light equivalent to the power of the sun. It absorbed water at room temperature and, when heated by the artificial light, released 70% of its stored water in 10 minutes — a rate four times greater than the one for a previously reported absorber gel. The researchers say that, at this rate, the material has the potential to meet a person’s daily demand. And under lower light conditions, replicating partly cloudy skies, it took 15 to 20 minutes for the material to release a similar amount of stored water.

Finally, the new loofah-like material was tested on samples polluted with organic dyes, heavy metals, oil and microplastics. In all of the tests, the gel made the water substantially cleaner. For example, in two cycles of treatment, water samples with around 40 parts per million (ppm) chromium were absorbed, then released with less than 0.07 ppm chromium — the allowable limit for drinking water. The researchers say the unique hydrogel structure that they created could be useful in additional applications, such as drug delivery, smart sensors and chemical separations.

The authors acknowledge funding from a Princeton University Presidential Postdoctoral Fellowship, a National GEM Consortium Fellowship, the U.S. National Science Foundation, the Eric and Wendy Schmidt Transformative Technology Fund at Princeton University, the Project X Fund at Princeton University and the Princeton Catalysis Initiative.

The paper’s abstract will be available on Feb. 8 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acscentsci.2c01245

For more of the latest research news, register for our upcoming meeting, ACS Spring 2023. Journalists and public information officers are encouraged to apply for complimentary press registration by completing this form.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook | LinkedIn | Instagram



Journal

ACS Central Science

DOI

10.1021/acscentsci.2c01245

Article Title

Quick Release Anti-Fouling Hydrogels for Solar-Driven Water Purification 

Article Publication Date

8-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

When Magnetic Moments Clash: How Quantum Mechanics Unlocks the Secrets of Iron Catalysts

When Magnetic Moments Clash: How Quantum Mechanics Unlocks the Secrets of Iron Catalysts

September 10, 2025
blank

Modular Organocatalysis Creates BN Isosteres via Wolff Rearrangement

September 10, 2025

Oxford AI Tool Revolutionizes Supernova Discovery Amidst Cosmic Noise

September 10, 2025

Innovative Methods for Generating Methanol Using Electricity and Biomass

September 9, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    57 shares
    Share 23 Tweet 14
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Beneath the Surface: Emerging Consensus Illuminates Cemental Tears

Journal of Psychiatry and Neuroscience Joins Canadian Science Publishing Portfolio

Bioengineered Lymph Nodes Provide New Insights into Human Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.