• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mixing between species reduces vulnerability to climate change

Bioengineer by Bioengineer
January 30, 2023
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Genetic diversity is the raw material that enables populations to evolve in response to changes in the environment – essentially, the more diversity the better.

Genetic mixing between warm-adapted and cool-adapted species can reduce the risk of extinction due to climate change

Credit: CreditL Figure 1. Genetic mixing between warm-adapted and cool-adapted species can reduce the risk of extinction due to climate change. Chris Brauer at Flinders University

Genetic diversity is the raw material that enables populations to evolve in response to changes in the environment – essentially, the more diversity the better.

Rapid climate warming is challenging many species to evolve and adapt quickly enough to avoid extinction, particularly species that don’t tolerate much environmental variation, such as those from cooler high-elevation habitats, which may lack genetic diversity important for adapting to climate change.

Hybridization, the process of mixing different species, can potentially help the vulnerable adopt and rapidly exploit novel genetic diversity from species that might already be adapted to warmer environments. However, hybrid populations have traditionally been considered of little conservation value.

New research, published in the prestigious journal Nature Climate Change provides rare evidence that natural hybridization can reduce the risk of extinction of species threatened by climate change.

This concept is similar to how the historic mixing between our ancestors and Neanderthals led to improved fitness in some modern human populations.

The team, including lead-author Dr Chris Brauer, project coordinator Professor Luciano Beheregaray and other biologists travelled to the Wet Tropics region of northeastern Australia to collect samples of five species of tropical rainbowfish along an elevational gradient.

They produced genomic data from the samples and discovered several pure and hybrid populations of rainbowfish. They also identified genes that enable rainbowfish populations to adapt to climate variation across the region and used environmental models to work out how much evolution will likely be required for populations to keep pace with climate change in the future.

Dr Brauer says that populations of cool-adapted upland species that have hybridised with a warm-adapted lowland species showed reduced vulnerability to future climates.

“These mixed populations contain more diversity at genes we think are important for climate adaptation, and are therefore more likely to persist in warmer environments”.

The finding that hybridisation (genetic mixing) may facilitate rapid adaptation to climate change has important implications for many threatened species.

MELFU Director and Flinders University Professor Luciano Beheregaray says that this study highlights the underappreciated conservation value of hybrid populations.

“Our findings are good news for biodiversity. They indicate that genetic mixing is an important tool for conservation that can contribute to natural evolutionary rescue of species threatened by climate change.”



Journal

Nature Climate Change

DOI

10.1038/s41558-022-01585-1

Method of Research

Case study

Subject of Research

Animals

Article Title

Natural hybridization reduces vulnerability to climate change’

Article Publication Date

30-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unraveling Hypospadias: Genetics and Development Insights

August 27, 2025
Dynamic Fusion Model Enhances scRNA-seq Clustering

Dynamic Fusion Model Enhances scRNA-seq Clustering

August 27, 2025

Scientists Unveil First Complete Structure of Botulinum Neurotoxin Complex

August 27, 2025

Unraveling BRCA2’s Complex Transcriptional Landscape with Hybrid-seq

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Optical Imaging Technique Promises Earlier Detection of Colorectal Cancer

Thioester-Driven RNA Aminoacylation Enables Peptide Synthesis

Exploring Frailty in Lung Transplantation: A Multidimensional Perspective

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.