• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Passing the chemical Turing test: Making artificial and real cells talk

Bioengineer by Bioengineer
January 25, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The classic Turing test evaluates a machine's ability to mimic human behavior and intelligence. To pass, a computer must fool the tester into thinking it is human–typically through the use of questions and answers. But single-celled organisms can't communicate with words. So this week in ACS Central Science, researchers demonstrate that certain artificial cells can pass a basic laboratory Turing test by "talking" chemically with living bacterial cells.

Sheref S. Mansy and colleagues proposed that artificial life would need to have the ability to interact seamlessly with real cells, and this could be evaluated in much the same way as a computer's artificial intelligence is assessed. To demonstrate their concept, the researchers constructed nano-scale lipid vessels capable of "listening" to chemicals that bacteria give off. The artificial cells showed that they "heard" the natural cells by turning on genes that made them glow. These artificial cells could communicate with a variety of bacterial species, including V. fischeri, E. coli and P. aeruginosa. The authors note that more work must be done, however, because only one of these species engaged in a full cycle of listening and speaking in which the artificial cells sensed the molecules coming from the bacteria, and the bacteria could perceive the chemical signal sent in return.

###

The authors acknowledge funding from the Simons Foundation, the Armenise-Harvard Foundation, the National Science Foundation and the Province of Trento.

The paper will be freely available on January 25th at this link: http://pubs.acs.org/doi/full/10.1021/acscentsci.00330.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With nearly 157,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact

Katie Cottingham
[email protected]
301-775-8455
@ACSpressroom

http://www.acs.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Revolutionary Compact Electric Motor Designed for Aviation

November 3, 2025

Mutant UBTF Gene’s Aberrant Transport Signal Fuels Aggressive Acute Myeloid Leukemia

November 3, 2025

Breakthrough Study Identifies Promising New Target for Autoimmune Disease Therapy

November 3, 2025

Breakthrough “Self-Tuning” Film Sets Stage for Next-Generation Wireless and Radar Technologies

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Compact Electric Motor Designed for Aviation

Mutant UBTF Gene’s Aberrant Transport Signal Fuels Aggressive Acute Myeloid Leukemia

Breakthrough Study Identifies Promising New Target for Autoimmune Disease Therapy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.