• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bizarre cretaceous bird from China shows evolutionarily decoupled skull and body

Bioengineer by Bioengineer
January 3, 2023
in Biology
Reading Time: 3 mins read
0
Life reconstruction of the 120-million-year-old bird Cratonavis zhui
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It is now widely accepted that birds are descended from dinosaurs. It is also understood that this transition encompasses some of the most dramatic transformations morphologically, functionally, and ecologically, thus eventually giving rise to the characteristic bird body plan.

Life reconstruction of the 120-million-year-old bird Cratonavis zhui

Credit: ZHAO Chuang

It is now widely accepted that birds are descended from dinosaurs. It is also understood that this transition encompasses some of the most dramatic transformations morphologically, functionally, and ecologically, thus eventually giving rise to the characteristic bird body plan.

However, paleontologists still scratch their heads to understand how this fantastic evolutionary event occurred.

Now, a new, complete 120-million-year-old fossil bird from China further complicates this issue by exhibiting a dinosaur-like skull articulated with a bird-like body. In addition, the fossil specimen, named Cratonavis zhui, preserves a surprisingly elongate scapula and first metatarsal, making it stand out from all other birds including fossil ones.

The study, published in Nature Ecology & Evolution on Jan. 2, was conducted by paleontologists from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences.

Cratonavis is positioned between the more reptile-like long-tailed Archaeopteryx and the Ornithothoraces (which had already evolved many traits of modern birds) in the avian evolutionary tree.

To study the fossil skull, the scientists first used high-resolution computed tomography (CT)-scanning. They then digitally removed the bones from their rocky tomb and reconstructed the original shape and function of the skull.

The result demonstrates that the Cratonavis skull is morphologically nearly identical to that of dinosaurs such as Tyrannosaurus rex rather than being bird-like. “The primitive cranial features speak to the fact that most Cretaceous birds such as Cratonavis could not move their upper bill independently with respect to the braincase and lower jaw, a functional innovation widely distributed among living birds that contributes to their enormous ecological diversity,” said Dr. LI Zhiheng, a lead author of the study.

As for the bizarre scapula and metatarsal in Cratonavis, Dr. WANG Min, a lead and corresponding author of this study, said, “The scapula is functionally vital to avian flight, and it conveys stability and flexibility. We trace changes of the scapula across the Theropod-Bird transition, and posit that the elongate scapula could augment the mechanical advantage of muscle for humerus retraction/rotation, which compensates for the overall underdeveloped flight apparatus in this early bird, and these differences represent morphological experimentation in volant behavior early in bird diversification.”

The new study shows that the first metatarsal was subjected to selection during the dinosaur-bird transition that favored a shorter bone. It then lost its evolutionary lability once it reached its optimal size, less than a quarter of the length of the second metatarsal.

“However, increased evolutionary lability was present among Mesozoic birds and their dinosaur kins, which may have resulted from conflicting demands associated with its direct employment of the hallux in locomotion and feeding,” said coauthor Dr. Thomas Stidham. For Cratonavis, such an elongate hallux likely stems from selection for raptorial behavior.

The aberrant morphologies of the scapula and metatarsals preserved in Cratonavis highlight the breadth of skeletal plasticity in early birds, said coauthor Dr. ZHOU Zhonghe. Changes in these elements across the theropod tree show clade-specific evolutionary lability resulting from the interplay among development, natural selection, and ecological opportunity.



DOI

10.1038/s41559-022-01921-w

Article Title

Decoupling the skull and skeleton in a Cretaceous bird with unique appendicular morphologies

Article Publication Date

2-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Chinese Scientists Uncover Neural Mechanisms Regulating Energy Expenditure in the Arcuate Hypothalamus

Chinese Scientists Uncover Neural Mechanisms Regulating Energy Expenditure in the Arcuate Hypothalamus

September 23, 2025
Revolutionizing Camel Husbandry with ICT Monitoring System

Revolutionizing Camel Husbandry with ICT Monitoring System

September 23, 2025

Global Research Team Unveils Framework to Study ‘Earth Engineers’

September 23, 2025

Self‑Regulated Bilateral Anchoring Creates Efficient Charge Transport Pathways for High‑Performance Rigid and Flexible Perovskite Solar Cells

September 23, 2025

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Discover “Protective Switches” That Could Enable Transplantation of Damaged Livers

Diamond Power: The Ideal Ally for Medical Implants

NBL1 Identified as a Critical Factor in Ovarian Cancer Metastasis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.