• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New quantum dots study uncovers implications for biological imaging

Bioengineer by Bioengineer
December 5, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study involving researchers at the University of Illinois Chicago achieved a milestone in the synthesis of multifunctional photonic nanomaterials.

Quantum dots (QDs) have a complex internal structure

Credit: P. Snee

A new study involving researchers at the University of Illinois Chicago achieved a milestone in the synthesis of multifunctional photonic nanomaterials.

In a paper published in the American Chemical Society’s journal Nano Letters, they report the synthesis of semiconductor “giant” core-shell quantum dots with record-breaking emissive lifetimes. In addition, the lifetimes can be tuned by making a simple alteration to the material’s internal structure. 

The group, which included collaborators from Princeton University and Pennsylvania State University, demonstrated a new structure-property concept that imparts the ability to spatially localize electrons or holes within a core/shell heterostructure by tuning the charge carrier’s kinetic energy on a parabolic potential energy surface.

According to UIC chemist Preston Snee, this charge carrier separation results in extended radiative lifetimes and in continuous emission at the single-nanoparticle level.

“These properties enable new applications for optics, facilitate novel approaches such as time-gated single-particle imaging and create inroads for the development of other new advanced materials,” said Snee, UIC associate professor of chemistry and the study’s senior co-author.

Snee and the study’s first author, Marcell Pálmai, UIC postdoctoral research associate in chemistry, teamed with Haw Yang of Princeton and others to excite the quantum dots particle with light to put it in the “exciton” state. The exciton is an electron/hole charge pair, and in the new materials, the electron becomes displaced from the center to the shell, where it becomes trapped for upwards of 500 nanoseconds, which represents the record for such nanomaterials.

“As emissive materials, quantum dots hold the promise of creating more energy-efficient displays and can be used as fluorescent probes for biomedical research due to their highly robust optical properties. They are 10 times to 100 times more absorptive than organic dyes and are nearly impervious to photobleaching, which is why they are used in the new Samsung QLED-TV,” they write.

These new particles have great efficacy for fundamental biological discovery, according to the researchers.

The quantum dots presented in their paper emit at red wavelengths, which minimizes scattering, while the long lifetimes allow for biological imaging to be performed with less background noise. At the single particle level, the new quantum dots emit continuously, so a research scientist can tag proteins relevant to cancer and follow the biological dynamics without losing track of the signal which is currently a common problem with such studies.

In future research, the group plans to demonstrate that the materials make good components for optical devices such as micron-sized lasers.

Additional co-authors of the paper are Marcell Pálmai, Eun Byoel Kim, Prakash Parajuli, Kyle Tomczak, Kai Wang, Bibash Sapkota, Nan Jiang and Robert F. Klie of UIC; Joseph S. Beckwith, Nyssa T. Emerson, Shuhui Yin and Tian Zhao of Princeton; and Ming Tien of Pennsylvania State University.

Funding from the University of Illinois Chicago primarily supported this work. The research was also supported by funding from the American Chemical Society Petroleum Research Fund and grants from the U.S. Department of Energy (DE-SC0019364), the Fonds National Suisse de la Recherche Scientifique (P2GEP2_191208) and the National Science Foundation (CHE-1944796).

 

 



Journal

Nano Letters

DOI

10.1021/acs.nanolett.2c03563

Article Title

Parabolic Potential Surfaces Localize Charge Carriers in Nonblinking Long-Lifetime “Giant” Colloidal Quantum Dots

Article Publication Date

1-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Colorless Solar Windows: Revolutionizing Architecture into Clean Energy Generators

Colorless Solar Windows: Revolutionizing Architecture into Clean Energy Generators

September 3, 2025
Label-Free Technique Reveals Biomolecular Condensate Composition

Label-Free Technique Reveals Biomolecular Condensate Composition

September 3, 2025

Bacteria That Illuminate Microplastic Pollution

September 3, 2025

Polyamines: Unraveling Their Role from Longevity to Cancer

September 3, 2025

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unlocking Value: Extracting Compounds from Spent Coffee

Increased Extracellular BAG3 Marks Early Systemic Sclerosis

How Moral Resilience Shapes ICU Nurses’ Coping Skills

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.