• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Nanodiamonds can be activated as photocatalysts with sunlight

Bioengineer by Bioengineer
November 30, 2022
in Chemistry
Reading Time: 3 mins read
0
two examples
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Nanodiamond materials have great potential as catalysts. Inexpensive nanoparticles made of carbon provide very large surfaces compared to their volume. However, to catalytically accelerate chemical reactions in an aqueous medium, electrons from the catalyst need to go into solvation and this requires in pure diamond materials high-energy UV light for excitation. On the other hand, the extremely small sizes of the nanoparticles allow new molecular states on the surfaces of nanodiamonds that also absorb visible light. 

two examples

Credit: T. Kirschbaum / HZB

Nanodiamond materials have great potential as catalysts. Inexpensive nanoparticles made of carbon provide very large surfaces compared to their volume. However, to catalytically accelerate chemical reactions in an aqueous medium, electrons from the catalyst need to go into solvation and this requires in pure diamond materials high-energy UV light for excitation. On the other hand, the extremely small sizes of the nanoparticles allow new molecular states on the surfaces of nanodiamonds that also absorb visible light. 

Different surfaces

As part of the DIACAT project, a team at HZB has now investigated different variants of nanodiamond materials during excitation with light and analysed the processes with extremely high time resolution. Nanodiamond samples with different surface chemistries were produced by the group of Dr. Jean-Charles Arnault, CEA, France and Prof. Anke Krueger, now at the University of Stuttgart. The nanoparticles differed in their surfaces, which contained different amounts of hydrogen or oxygen atoms.

Hydrogen helps – and fullerene-like carbon too

“The hydrogen on the surfaces makes electron emission much easier,” explains Dr Tristan Petit, nanodiamond expert at HZB. “Among the many variants, we discovered that a certain combination of hydrogen as well as fullerene-like carbon on the surfaces of the nanoparticles is ideal,” he says.

Ultrafast laser excitations

In the Laserlab at HZB they studied aqueous nanodiamond dispersions with different surface terminations such as hydrogen, -OH or -COOH after exciting them with ultrafast laser pulses. “We were able to experimentally measure exactly how the absorption profile behaves with different excitation wavelengths in the UV range at 225 nm and with blue light in the visible range at 400 nm”, explains Dr Christoph Merschjann, HZB.

Picoseconds after the excitation

“We wanted to find out what happens in the first crucial picoseconds after excitation with light, because that is the time when an electron leaves the surface and goes into the water,” says Merschjann. The theory team led by Dr Annika Bande contributed modelling with density functional theory to interpret the spectra. The data showed, as expected, that UV light brings electrons into solution in all samples, but for those samples that had fullerene-like carbon on their surfaces, this was also achieved with visible light.

Blue light can work

“In this work we show – to the best of our knowledge for the first time – that the emission of solvated electrons from nanodiamonds in water is possible with visible light!”, Petit summarises the results. This is a decisive step towards opening up nanodiamond materials as photocatalysts. These inexpensive and metal-free materials could be a key to further processing CO2 into valuable hydrocarbons with sunlight in the future, or even to convert N2 into ammonia.

Note: DIACAT has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement no 665085.



Journal

Nanoscale

DOI

10.1039/D2NR03919B

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Early dynamics of the emission of solvated electrons from nanodiamonds in water

Article Publication Date

1-Nov-2022

COI Statement

none

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.