• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Novel insecticides are bad news for bee health and their guts

Bioengineer by Bioengineer
October 25, 2022
in Chemistry
Reading Time: 4 mins read
0
Honey bees
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Insecticides containing flupyradifurone and sulfoxaflor can have devastating effects on honey bee health. The substances damage the insects’ intestinal flora, especially when used in conjunction with a common fungicide, making them more susceptible to disease and shortening their life span. This was recently proven in a study conducted at the Martin Luther University Halle-Wittenberg (MLU) and the Helmholtz Centre for Environmental Research (UFZ), as published in Science of the Total Environment. The two insecticides were considered harmless to bees and bumblebees when approved, but their use has since been severely restricted.

Honey bees

Credit: Uni Halle / Markus Scholz

Insecticides containing flupyradifurone and sulfoxaflor can have devastating effects on honey bee health. The substances damage the insects’ intestinal flora, especially when used in conjunction with a common fungicide, making them more susceptible to disease and shortening their life span. This was recently proven in a study conducted at the Martin Luther University Halle-Wittenberg (MLU) and the Helmholtz Centre for Environmental Research (UFZ), as published in Science of the Total Environment. The two insecticides were considered harmless to bees and bumblebees when approved, but their use has since been severely restricted.

For the study, honey bees that were free from environmental influences were first bred in the laboratory. “We wanted to control every aspect of the bees’ lives – from their diet to their exposure to pathogens or pesticides”, says Dr Yahya Al Naggar, the biologist who led the project at MLU and who now works at Tanta University in Egypt. In the first few days, all bees were given the same food: sugar syrup. They were then divided into several groups and various pesticides were added to their food. One group was given flupyradifurone, while another was given sulfoxaflor. Both substances are approved insecticides in Germany, but their use is now limited to greenhouses.

As pesticides are often used as a mixture, the scientists also took this into account in their laboratory experiment by enriching the food administered to two other groups not only with the insecticides mentioned, but also with azoxystrobin, which has been used to protect plants from harmful fungi for many decades. The concentration of the substances was well below the legal requirements in each case. “Our approach was based on the realistic concentrations that might be found in pollen and nectar from plants that have been treated with the pesticides”, says Al Naggar. A control group continued to receive the normal sugar syrup without additives.

Over a period of ten days, the team observed whether the substances had any effects on the bees and, if so, what. They found that the pesticides are anything but harmless: Around half of all bees whose diet had been supplemented with flupyradifurone died during the study – and even more when combined with azoxystrobin. While sulfoxaflor produced similar effects, more insects survived the diet. 

The scientists also analysed the bees’ intestinal flora, i.e. the bacteria and fungi living in their digestive tract. “The fungicide azoxystrobin led to a significant reduction in naturally occurring fungi. That was to be expected, as fungicides are used to control fungi”, says Dr Tesfaye Wubet from the Helmholtz Centre for Environmental Research (UFZ), who is also a member of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig. Over the course of the ten-day study, however, the team was able to show that the mixture of fungi and bacteria detected in the insects differed greatly from the control group depending on the substances used. According to the researchers, the bacterium Serratia marcescens was able to spread alarmingly well in the digestive tract of the treated insects. “These bacteria are pathogenic and harmful to bees’ health. They can make it harder for the insects to fight off infection, leading to premature death”, explains Al Naggar. 

As the study was conducted in a laboratory in Halle to exclude the number of external influences, it is unclear whether the same results can be found in nature. “The effects of the pesticides could well be even more dramatic – or the bees might be able to fully or at least partially compensate for the negative effects”, concludes Wubet. With this in mind, the team calls for the potential effects of new pesticides on beneficial insects to be researched more rigorously before they are approved and for their effects on aspects such as intestinal flora to be included as standard in the risk assessment.

The study was funded by the Alexander von Humboldt Foundation with additional support via the EU-funded project “Poshbee”. 

Study: Al Naggar Y., Singavarapu B., Paxton R.J. & Wubet T.. Bees under interactive stressors: the novel insecticides flupyradifurone and sulfoxaflor along with the fungicide azoxystrobin disrupt the gut microbiota of honey bees and increase opportunistic bacterial pathogens. Science of the Total Environment (2022). doi: 10.1016/j.scitotenv.2022.157941



Journal

Science of The Total Environment

DOI

10.1016/j.scitotenv.2022.157941

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Bees under interactive stressors: the novel insecticides flupyradifurone and sulfoxaflor along with the fungicide azoxystrobin disrupt the gut microbiota of honey bees and increase opportunistic bacterial pathogens

Article Publication Date

11-Aug-2022

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

Scientists Convert Plastic Waste into High-Performance CO2 Capture Materials

September 5, 2025
Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

Decoding Orderly and Disorderly Behavior in 2D Nanomaterials: Paving the Way for AI-Driven Custom Designs

September 5, 2025

Physicists Develop Visible Time Crystal for the First Time

September 5, 2025

Adaptive Visible-Infrared Camouflage Enables Wide-Spectrum Radiation Control for Extreme Temperature Environments

September 5, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    55 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Zidesamtinib Demonstrates Lasting Efficacy in ROS1 TKI-Pretreated NSCLC, Including Cases with CNS Involvement and ROS1 G2032R Mutations

Crizotinib Does Not Enhance Disease-Free Survival in Resected Early-Stage ALK-Positive NSCLC

FLAURA2 Trial Demonstrates Enhanced Overall Survival with Osimertinib and Chemotherapy in EGFR-Mutated Advanced NSCLC

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.