• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scripps Research scientists map key protein structure of Hepatitis C virus

Bioengineer by Bioengineer
October 20, 2022
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA, CA—A team led by scientists at Scripps Research and the University of Amsterdam has achieved an important goal in virology: mapping, at high resolution, critical proteins that stud the surface of the Hepatitis C virus (HCV) and enable it to enter host cells.

E1E2 Complex

Credit: Scripps Research

LA JOLLA, CA—A team led by scientists at Scripps Research and the University of Amsterdam has achieved an important goal in virology: mapping, at high resolution, critical proteins that stud the surface of the Hepatitis C virus (HCV) and enable it to enter host cells.

The discovery, reported in Science on October 21, 2022, details key sites of vulnerability on the virus—sites that can now be targeted effectively with vaccines.

“This long sought-after structural information on HCV puts a wealth of previous observations into a structural context and paves the way for rational vaccine design against this incredibly difficult target,” says study co-senior author Andrew Ward, PhD, professor in the Department of Integrative Structural and Computational Biology at Scripps Research.

The study was the product of a multi-year collaboration that included the Ward laboratory, the lab of Gabriel Lander, PhD (also a professor in the Department of Integrative Structural and Computational Biology at Scripps Research); the lab of Rogier Sanders, PhD, of the University of Amsterdam; and the lab of Max Crispin, DPhil, at the University of Southampton.

It is projected that roughly 60 million people globally—including about two million Americans—have chronic HCV infections. The virus infects liver cells, typically establishing a “silent” infection for decades until liver damage becomes severe enough to cause symptoms. It is a leading cause of chronic liver disease, liver transplants and primary liver cancers.

The origins of the virus are uncertain, but it is thought to have emerged at least several hundred years ago, and then eventually spread globally—especially via blood transfusions—in the latter half of the 20th century. While the virus was mostly eliminated from blood banks after its initial discovery in 1989, it continues to spread chiefly via needle-sharing among intravenous drug users in developed countries, and by the use of unsterilized medical instruments in developing countries. The leading HCV antiviral drugs are effective but far too expensive for large-scale treatment.

An effective vaccine could eventually eliminate HCV as a public health burden. However, no such vaccine has ever been developed—largely because of the extraordinary difficulty in studying HCV’s envelope protein complex, which is made of two viral proteins called E1 and E2.

“The E1E2 complex is very flimsy—it’s like a bag of wet spaghetti, always changing its shape—and that’s why it’s been extremely challenging to image at high resolution,” says co-first author Lisa Eshun-Wilson, PhD, a postdoctoral research associate in both the Lander and Ward labs at Scripps Research.

In the study, the researchers found that they could use a combination of three broadly neutralizing anti-HCV antibodies to stabilize the E1E2 complex in a natural conformation. Broadly neutralizing antibodies are those that are able to protect against a broad range of viral strains, by binding to relatively non-varying sites on the virus in ways that interrupt the viral life cycle.

The researchers imaged the antibody-stabilized protein complex using low-temperature electron microscopy. With the help of advanced image-analysis software, the researchers were able to generate an E1E2 structural map of unprecedented clarity and extent—at near-atomic scale resolution.

Details included most of the E1 and E2 protein structures, including the key E1/E2 interface, and the three antibody-binding sites. The structural data also illuminated the thicket of sugar-related “glycan” molecules atop E1E2. Viruses often use glycans to shield themselves from the immune system of an infected host, but in this case, the structural data showed that HCV’s glycans apparently have another key role: in helping to hold the flimsy E1E2 complex together.

Having these details of E1E2 will help researchers rationally design a vaccine that powerfully elicits these antibodies to block HCV infection.

“The structural data also should allow us to discover the mechanisms by which these antibodies neutralize HCV,” says co-first author Alba Torrents de la Peña, PhD, a postdoctoral researcher in the Ward lab.

“Structure of the hepatitis C virus E1E2 glycoprotein complex” was co-authored by Alba Torrents de la Peña, Lisa Eshun-Wilson, Gabriel Lander, and Andrew Ward, of Scripps Research; Kwinten Sliepen, Ian Zon, Sylvie Koekkoek, Ana Chumbe, Janke Schinkel, and Rogier Sanders of the University of Amsterdam; and Maddy Newby, Joel Allen, and Max Crispin of the University of Southampton.

Funding was provided by the National Institutes of Health (GM143805, GM142196), the National Science Foundation (2109312), the Netherlands Organization for Scientific Research, the Amsterdam Institute for Infection and Immunity, and the Bill & Melinda Gates Foundation.

About Scripps Research
Scripps Research is an independent, nonprofit biomedical institute ranked the most influential in the world for its impact on innovation by Nature Index. We are advancing human health through profound discoveries that address pressing medical concerns around the globe. Our drug discovery and development division, Calibr, works hand-in-hand with scientists across disciplines to bring new medicines to patients as quickly and efficiently as possible, while teams at Scripps Research Translational Institute harness genomics, digital medicine and cutting-edge informatics to understand individual health and render more effective healthcare. Scripps Research also trains the next generation of leading scientists at our Skaggs Graduate School, consistently named among the top 10 US programs for chemistry and biological sciences. Learn more at www.scripps.edu.



Journal

Science

DOI

10.1126/science.abn9884

Article Title

Structure of the hepatitis C virus E1E2 glycoprotein complex

Article Publication Date

21-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Children’s Skills: Connecting Motor Competence and Learning

September 4, 2025

Commensal Yeast Boosts Salmonella Typhimurium Virulence

September 4, 2025

Resilience Boosts Nursing Quality in Kermanshah EDs

September 4, 2025

Enhancing Neurovascularization for Better Bone Regeneration

September 4, 2025

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Children’s Skills: Connecting Motor Competence and Learning

Renewable Biohydrogen from Cassava Wastewater & Glycerol

Commensal Yeast Boosts Salmonella Typhimurium Virulence

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.