• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists identify potential source of ‘shock-darkened’ meteorites, with implications for hazardous asteroid deflection

Bioengineer by Bioengineer
October 4, 2022
in Chemistry
Reading Time: 3 mins read
0
RAPTORS
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When the Chelyabinsk fireball exploded across Russian skies in 2013, it littered Earth with a relatively uncommon type of meteorite. What makes the Chelyabinsk meteorites and others like them special is their dark veins, created by a process called shock darkening. Yet, planetary scientists have been unable to pinpoint a nearby asteroid source of these kinds of meteorites – until now.

RAPTORS

Credit: Vishnu Reddy/University of Arizona

When the Chelyabinsk fireball exploded across Russian skies in 2013, it littered Earth with a relatively uncommon type of meteorite. What makes the Chelyabinsk meteorites and others like them special is their dark veins, created by a process called shock darkening. Yet, planetary scientists have been unable to pinpoint a nearby asteroid source of these kinds of meteorites – until now.

In a new paper published in the Planetary Science Journal, University of Arizona scientists identified an asteroid named 1998 OR2 as one potential source of shock-darkened meteorites. The near-Earth asteroid is about 1 1/2 miles wide and made a close approach to Earth in April 2020. When pieces of asteroids break off into space and then land on Earth, they are considered meteorites.

“Shock darkening is an alteration process caused when something impacts a planetary body hard enough that the temperatures partially or fully melt those rocks and alter their appearance both to the human eye and in our data,” said lead study author Adam Battle, a UArizona graduate student studying planetary science. “This process has been seen in meteorites many times but has only been seen on asteroids in one or two cases way out in the main asteroid belt, which is found between Mars and Jupiter.”

Battle’s adviser and study co-author Vishnu Reddy, a planetary sciences professor, discovered shock darkening on main belt asteroids in 2013 and 2014. Reddy co-leads the Space Domain Awareness lab at the Lunar and Planetary Laboratory with engineering professor Roberto Furfaro. Battle has worked in the lab since 2019.

“Impacts are very common in asteroids and any solid body in the solar system because we see impact craters on these objects from spacecraft images. But impact melt and shock-darkening effects on meteorites derived from these bodies are rare. Finding a near-Earth asteroid dominated by this process has implications for impact hazard assessment,” Reddy said. “Adam’s work has shown that ordinary chondrite asteroids can appear as carbonaceous in our classification tools if they are affected by shock darkening. These two materials have different physical strengths, which is important when trying to deflect a hazardous asteroid.”

For this study, Battle, Reddy and their team used the RAPTORS system, a telescope atop the Kuiper Space Sciences building on campus, to collect data on 1998 OR2’s surface composition and determined that it looked like an ordinary chondrite asteroid. Chondrite asteroids contain the minerals olivine and pyroxene and are lighter in appearance.

But when the team ran the data through a classification tool, it suggested the asteroid was instead a carbonaceous asteroid, a type of asteroid that is characteristically dark and relatively featureless. 

“The mismatch was one of the early things that got the project going to investigate potential causes for the discrepancy,” Battle said. “The asteroid is not a mixture of ordinary chondrite and carbonaceous asteroids, but rather it is definitely an ordinary chondrite, based on its minerology, which has been altered – likely through the shock darkening process – to look like a carbonaceous asteroid to the classification tool.”

Shock darkening was hypothesized in the late 1980s but didn’t gain traction and went unstudied until 2013 when the fireball over Russia produced meteorites with shock-darkened characteristics.

Scientists, including Reddy, started getting more interested in shock darkening, and Reddy soon discovered shock-darkened asteroids in the main asteroid belt. On Earth, 2%, or roughly 1,400 of about 60,000 ordinary chondrite meteorites have undergone some degree of shock or impact process, Battle said. 

Researchers were able to rule out a lot of other potential reasons 1998 OR2 appeared to be a carbonaceous asteroid rather than an ordinary chondrite. One possible cause for the discrepancy could be space weathering, in which exposure to the space environment causes changes to the asteroid surface, but if that were the case, the asteroid would appear to be slightly redder in color than it is. Shock darkening is a process that can suppress the appearance of olivine and pyroxene while also darkening the asteroid’s surface to look like a carbonaceous asteroid.



Journal

The Planetary Science Journal

DOI

10.3847/PSJ/ac7223

Method of Research

Data/statistical analysis

Article Title

Physical Characterization of Near-Earth Asteroid (52768) 1998 OR2: Evidence of Shock Darkening/Impact Melt

Article Publication Date

4-Oct-2022

Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.