• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Metasurface engineered to create three different images depending on illumination

Bioengineer by Bioengineer
September 27, 2022
in Chemistry
Reading Time: 4 mins read
0
Experimental results
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON — Researchers have developed a metasurface device that can display three types of images depending on the illumination light. The three-channel device could be used as an anticounterfeiting measure or offer a new way to securely deliver encrypted information.

Experimental results

Credit: Qi Dai, Wuhan University

WASHINGTON — Researchers have developed a metasurface device that can display three types of images depending on the illumination light. The three-channel device could be used as an anticounterfeiting measure or offer a new way to securely deliver encrypted information.

“Metasurfaces are artificial materials with tiny nanostructures that can be used to manipulate light,” said research team member Qi Dai from Wuhan University in China. “In this work, we exploited both the size and orientation of the nanostructures to design a metasurface with three working modes.”

The researchers describe the new device in the Optica Publishing Group journal Optics Express. They also showed that depending on the light used, the metasurface would generate a holographic image or a structural-color nanoprinting image with or without polarization-dependent watermarks.

“Our tiny metasurface could be easily attached to currency, ID cards, credit cards, certificates, watches or rings for anticounterfeiting,” said Dai. “Because this multi-functional metasurface features twofold safeguards, it could provide a simple but effective approach to fight against counterfeiting.”

A three-in-one device

Although other metasurface-based anticounterfeiting devices have been developed, the hidden information is usually retrieved either on the surface or via a far-field holographic image. To create a more secure three-channel metasurface, the researchers merged watermarked structural-color nanoprinting with holographic imaging into a device, which is made of tiny nanobricks arranged on a transparent substrate.

By carefully engineering the sizes and orientations of the nanobricks, the researchers developed a way to create structural-color images that appear on the surface of the device as well as a holographic image that appears in the far-field. Instead of relying on inks or dyes, structural-color uses nanostructures with different geometric parameters to produce color by directly influencing the spectrum of transmitted or reflected light.

The unwatermarked structural-color nanoprinting image can be readily observed under natural light illumination while the same image covered with a watermark pattern can be decoded only with an optical polarizer. The holographic image in the third channel can only be viewed under coherent laser light.

Additional security

“When our metasurface is employed for anticounterfeiting, the unwatermarked structural-color nanoprinting could be easily observed using a camera on a smartphone,” said Dai. “The watermarked pattern could encode information needed to provide authentication since it only appears with the help of an optical polarizer. The holographic image, which might be reconstructed with a laser pointer, could be used as a second layer of security.”

To demonstrate the new metasurface device, the researchers fabricated a sample using standard electron beam lithography. The watermarked and unwatermarked nanoprinting images were observed using an optical microscope while the holographic images were visualized using an optical path consisting of a continuum laser, iris, lens, the sample and an optical screen.

“Our experiments showed that the watermarked structural-color nanoprinting had high polarization sensitivity and created a clear visual with bright color effects,” said Dai. “We also found that the designed metasurface can create a holographic image over a broad wavelength range from 480 nm to about 650 nm.”

The researchers plan to combine their new multi-functional metasurfaces with other materials such as liquid crystal and black phosphorus to achieve dynamic and more versatile control of light. They also want to explore how the metasurfaces could be used for optical computing and biomedical sensing and are working on ways to mass produce the new material.  

Paper: N. Zhao, Z. Li, G. Zhu, J. Li, L. Deng, Q. Dai, W. Zhang, Z. He, G. Zheng, “Tri-channel metasurface for watermarked structural-color nanoprinting and holographic imaging,” Opt. Express, 30, 21 (2022).

DOI: 10.1364/OE.472789

About Optics Express

Optics Express reports on scientific and technology innovations in all aspects of optics and photonics. The bi-weekly journal provides rapid publication of original, peer-reviewed papers. It is published by Optica Publishing Group and led by Editor-in-Chief James Leger of the University of Minnesota, USA. Optics Express is an open-access journal and is available at no cost to readers online.  For more information, visit Optics Express.

About Optica Publishing Group (formerly OSA)

Optica Publishing Group is a division of Optica (formerly OSA), Advancing Optics and Photonics Worldwide. It publishes the largest collection of peer-reviewed content in optics and photonics, including 18 prestigious journals, the society’s flagship member magazine, and papers from more than 835 conferences, including 6,500+ associated videos. With over 400,000 journal articles, conference papers and videos to search, discover and access, Optica Publishing Group represents the full range of research in the field from around the globe.



Journal

Optics Express

DOI

10.1364/OE.472789

Article Title

Tri-channel metasurface for watermarked structural-color nanoprinting and holographic imaging

Article Publication Date

27-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.