• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Potential long-term treatment for asthma found

Bioengineer by Bioengineer
August 9, 2022
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

09 August 2022 | Birmingham, UK

Dr Jill Johnson, Aston University’s School of Biosciences

Credit: Aston University

09 August 2022 | Birmingham, UK

  • New approach tackles one of the causes of asthma, not just its symptoms
  • In treated mice, symptoms virtually disappeared within two weeks.
  • Further research needed before the treatment can be trialled in humans

A possible way to tackle one of the underlying causes of asthma has been developed by researchers from Aston University and Imperial College London.

In tests in mice, the researchers were able to virtually eliminate asthmatic symptoms within two weeks and return their airways to near normal.

Just under 5.5 million people in the UK receive treatment for asthma and around 1,200 people die of the disease each year.

Asthma causes the airways to become thickened and constricted, resulting in symptoms such as wheezing and shortness of breath.

Current treatments, including steroids, provide short term relief from these symptoms, by either relaxing the airways or reducing inflammation. However, no current drugs address the structural changes asthma makes to the airway and lungs, in order to offer a longer-lasting treatment.

Lead researcher, Dr Jill Johnson, from Aston University’s School of Biosciences, said: “By targeting the changes in the airway directly, we hope this approach could eventually offer a more permanent and effective treatment than those already available, particularly for severe asthmatics who don’t respond to steroids. However, our work is still at an early stage and further research is needed before we can begin to test this in people.”

The research focused on a type of stem cell known as a pericyte, which is mainly found in the lining of blood vessels. When asthmatics have an allergic and inflammatory reaction, for example to house dust mites, this causes the pericytes to move to the airway walls. Once there, the pericytes develop into muscle cells and other cells that make the airway thicker and less flexible. 

This movement of the pericytes is triggered by a protein known as CXCL12. The researchers used a molecule called LIT-927 to block the signal from this protein, by introducing it into the mice’s nasal passages. Asthmatic mice that were treated with LIT-927 had a reduction in symptoms within one week and their symptoms virtually disappeared within two weeks. The researchers also found that the airway walls in mice treated with LIT-927 were much thinner than those in untreated mice, closer to those of healthy controls.

The team are now applying for further funding to carry out more research into dosage and timing, This would help them to determine when might be the most effective time to administer the treatment during the progress of the disease, how much of LIT-927 is needed, and to better understand its impact on lung function. They believe that, should this research be successful, it will still be several years before the treatment could be tested in people.

The research was funded by the Medical Research Council, part of UK Research and Innovation and is published in Respiratory Medicine.

ENDS

 

 

Notes to Editors

For more information, contact:

Abigail Chard, Campus PR, [email protected] (+44) 7960 448532 or Rebecca Hume, Press and Communications Manager, Aston University, M: (+44)7557745416,  E: [email protected]

 

Video footage of PhD student Rebecca Bignold explaining the research is available here: https://www.youtube.com/watch?v=tHDeQcTg8Hw

Paper details: ‘Chemokine CXCL12 drives pericyte accumulation and airway remodeling in allergic airway disease’ by Rebecca Bignold, Bushra Shammout, Jessica E. Rowley, Mariaelena Repici, John Simms, Jill R. Johnson is published in Respiratory Medicine, DOI: 10.1186/s12931-022-02108-4

PDF: https://research.aston.ac.uk/files/62006547/12931_2022_Article_2108.pdf

 

About Aston University

Founded in 1895 and a University since 1966, Aston is a long established university led by its three main beneficiaries – students, business and the professions, and our region and society. Aston University is located in Birmingham and at the heart of a vibrant city and the campus houses all the university’s academic, social and accommodation facilities for our students. Saskia Loer Hansen is the interim Vice-Chancellor & Chief Executive.

 

Aston University was named University of the Year 2020 by The Guardian and the University’s full time MBA programme has been ranked in the top 100 in the world in the Economist MBA 2021 ranking. The Aston MBA has been ranked 12th in the UK and 85th in the world.

 

Be first to get the latest news, research and expert comment from Aston
by
following us on Twitter

Need an expert for your story? Browse our expert directory



Journal

Respiratory Medicine

DOI

10.1186/s12931-022-02108-4

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Chemokine CXCL12 drives pericyte accumulation and airway remodeling in allergic airway disease

Article Publication Date

13-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

Seismic Analysis of Masonry Facades via Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.