• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A new approach for detecting tumor heterogeneity to assess breast cancer patient outcomes

Bioengineer by Bioengineer
August 4, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LEBANON, NH –  Tumor heterogeneity refers to the presence of a variety of distinct cell types within a tumor. High tumor heterogeneity is thought to contribute to breast cancer progression and metastasis, or spreading to other parts of the body. Researchers at Dartmouth Cancer Center have developed a new approach for detecting and quantifying tumor heterogeneity to assess patient outcomes in breast cancer. The approach will pave the way to utilizing the extent of tumor heterogeneity as a factor in therapeutic decision-making.

Tumor heterogeneity

Credit: Diwakar R. Pattabiraman

LEBANON, NH –  Tumor heterogeneity refers to the presence of a variety of distinct cell types within a tumor. High tumor heterogeneity is thought to contribute to breast cancer progression and metastasis, or spreading to other parts of the body. Researchers at Dartmouth Cancer Center have developed a new approach for detecting and quantifying tumor heterogeneity to assess patient outcomes in breast cancer. The approach will pave the way to utilizing the extent of tumor heterogeneity as a factor in therapeutic decision-making.

The study finds that high levels of heterogeneity in a patient’s tumor are typically associated with poor prognosis. However, they were also able to identify specific proteins that regulate the extent of heterogeneity in a tumor and its potential to spread.

These findings, “Phenotypic heterogeneity driven by plasticity of the intermediate EMT state governs disease progression and metastasis in breast cancer” are newly published in Science Advances.

“This work is exciting because we have developed an approach to quantify tumor heterogeneity that can be applied to patient specimens obtained in a pathology lab,” says corresponding author Diwakar R. Pattabiraman, PhD.

Recognizing the impact of tumor heterogeneity and developing ways of quantifying it, are the initial steps to ultimately being able to decrease or curtail the development of high levels of heterogeneity in patient tumors as a therapeutic avenue.

The team’s next steps are to assess how the extent of tumor heterogeneity determines treatment outcomes in breast cancer. “If we can obtain tumor specimens from a patient before therapy, we can try to predict how they respond to the current standard-of-care regimens,” says Pattabiraman.

The team’s work was presented in April, 2022, at the American Association for Cancer Research annual meeting in New Orleans, LA by Dr. Meredith Brown, a recent graduate of the Pattabiraman laboratory who led the research study.

*  *  *

Diwakar R. Pattabiraman, PhD, is a member of the Cancer Signaling, Genomes and Networks Research Program at Dartmouth Cancer Center, and Assistant Professor of Molecular and Systems Biology at Dartmouth’s Geisel School of Medicine. His research interests include studying the sources of tumor heterogeneity and its implications for tumor progression and therapy resistance. @diwraman

Meredith S. Brown, PhD, is a recent graduate of the Pattabiraman laboratory and the Molecular and Cellular Biology graduate program at Dartmouth. In addition to understanding the biology of breast tumor heterogeneity, her primary project has focused on developing the methodology and application of a novel assay to quantify tumor heterogeneity as a tool to assess patient prognosis.

*  *  *

About Dartmouth Cancer Center

About Dartmouth Cancer Center: Dartmouth Cancer Center combines the advanced cancer research in partnership with Dartmouth and the Geisel School of Medicine, with award-winning, personalized, and compassionate patient-centered cancer care based at the Norris Cotton Cancer Care Pavilion at Dartmouth Hitchcock Medical Center. With 14 locations around New Hampshire and Vermont, Dartmouth Cancer Center is one of only 52 National Cancer Institute-designated Comprehensive Cancer Centers. Each year the Dartmouth Cancer Center schedules 74,000 appointments seeing more than 4,500 newly diagnosed patients, and currently offers patients more than 240 active clinical trials. Celebrating its 50th anniversary in 2022, Dartmouth Cancer Center remains committed to excellence, outreach and education. We strive to prevent and cure cancer, enhance survivorship and to promote cancer health equity through pioneering interdisciplinary research and collaborations. Learn more at http://cancer.dartmouth.edu.



Journal

Science Advances

DOI

10.1126/sciadv.abj8002

Method of Research

Experimental study

Subject of Research

Cells

Article Title

Phenotypic heterogeneity driven by plasticity of the intermediate EMT state governs disease progression and metastasis in breast cancer

Article Publication Date

3-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

ASU Scientists Discover New Fossils and Identify a New Ancient Human Ancestor Species

ASU Scientists Discover New Fossils and Identify a New Ancient Human Ancestor Species

August 14, 2025
New Fossil Finds Unveil a Previously Unknown Ancient Human Species, Shedding Light on Evolution

New Fossil Finds Unveil a Previously Unknown Ancient Human Species, Shedding Light on Evolution

August 14, 2025

Embryonic Stem Cell Spheroids Enable Scaffold-Free Cartilage Engineering

August 13, 2025

New Discovery Reveals Early Hominin Species Coexisted in Ethiopia

August 13, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultrasound AI Unveils Groundbreaking Study on Using AI and Ultrasound Images to Predict Delivery Timing

County-Level Variations in Cervical Cancer Screening Coverage and Their Impact on Incidence and Mortality Rates

Mount Sinai Study Adds Evidence Linking Prenatal Acetaminophen Exposure to Increased Autism and ADHD Risk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.