• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How ADAR1 mutation leads to self-destructive inflammation

Bioengineer by Bioengineer
August 2, 2022
in Biology
Reading Time: 3 mins read
0
Immunology Research Oberst Lab UW Medicine
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study shows how mutation of the ADAR1 gene sets off biochemical pathways that produce an autoimmune response that harms the developing brain and other areas of the body.

Immunology Research Oberst Lab UW Medicine

Credit: Andrew Oberst

A new study shows how mutation of the ADAR1 gene sets off biochemical pathways that produce an autoimmune response that harms the developing brain and other areas of the body.

The ADAR gene contains instructions for making proteins used by the immune system. Normally, the body’s immune system fights off pathogens, foreign bodies, and cancers. An RNA-editing enzyme produced by the ADAR1 gene steps in to stop abnormal immune activation when the body misidentifies its own RNA.

Mutations in the ADAR1 gene are common in people of northern European descent. When a second specific mutation is also present in an individual, together they can contribute to a condition in which an embryo, fetus or newborn appears to be over-zealously fighting off a viral infection, but no causative pathogens are present. In people the disease is called Aicardi-Goutieres Syndrome.

While most babies with the mutation do not have symptoms, the severe forms of the condition can lead to cognitive impairment, additional neurological problems, and damage to other organs, like the kidneys and liver, and it can be fatal. While the two disorders are not considered related, the syndrome shares a few features with another autoimmune disease, systemic lupus erythematosus.

Because it looks like the baby is trying to overcome a virulent virus, but no actual infection can be detected, the disease appears to mimic an infection acquired just before or soon after birth.

Studying the immunological repercussions of this mutation, in addition to increasing critical knowledge to improve medical understanding about this devastating disease, can provide broader insights into some aspects of genetic and biochemical activities and interactions culminating in abnormal inflammation.

The findings of the research, conducted in mouse models, appear July 28 in the print edition of Nature. Here is the online copy of the paper. The study took place in the University of Washington School of Medicine  immunology labs of Andrew Oberst, Daniel Stetson and Ram Savan. It was led by Nicholas W. Hubbard, Joshua M. Ames and Megan Maurano.

They learned that a point mutation in a particular domain of the ADAR1 gene can lead to the activation of a mammalian protein known as ZBP1. This protein can trigger programmed cell death and as well as the orchestration of other gene activities in a dramatic response to a supposed threat.

The scientists found that ablating ZBP1 got rid of the apparent damaging effects from the ADAR1 mutation without eliminating the mutation’s underlying inflammatory program. The loss of one of the genes involved in cell death also had some protective effects.  However, the scientists were surprised to see that, if they deleted it along with several other enzymes involved in cell death, the multiple deletions paradoxically made matters worse.

These findings suggest that RNA from within our own cells is altered by ADAR1, and that when this does not happen normally the result is activation of ZBP1. Unexpectedly, the study found that the damage that results from this ZBP1 activation is not related to activating cell death, the previously described function of ZBP1. Rather, their study suggests that mutation of the ADAR1 gene allows ZBP1 to signal for inflammatory responses that make the body attack its own tissues, even though there are no pathogens present to encourage a fight to take place.

In addition, the results from this study also point to a dual function of the enzyme caspase-8 as both an agent of programmed cell death as well as a suppressor of ZBP1 cell death and inflammation.

“Indeed, both the presence and absence of caspase-8 may drive pathology in ADAR1-mutant mice,” the scientists wrote in their Nature paper. They scientists think that two different types of programmed cell self-destruction, as well as the production of inflammation signals, may all contribute. These could occur in varying degrees, depending on cell and tissue types, to cause organ damage in animals that carry the two genes associated with the autoimmune disease under investigation.

 

 



Journal

Nature

DOI

10.1038/s41586-022-04896-7

Method of Research

Experimental study

Subject of Research

Animals

Article Title

ADAR1 mutation causes ZBP1-dependent immunopathology

Article Publication Date

28-Jul-2022

COI Statement

Daniel B.Stetson is a co-founder and shareholder of Danger Bio, LLC, and a scientific advisor for Related Sciences LLC. Andew Oberst is a co-founder and shareholder of Walking Fish Therapeutics.

Share12Tweet8Share2ShareShareShare2

Related Posts

Ethanol Pretreatment Boosts Beetroot Drying Efficiency

Ethanol Pretreatment Boosts Beetroot Drying Efficiency

September 15, 2025
Cells Collaborate to Amplify Their Sensory Abilities

Cells Collaborate to Amplify Their Sensory Abilities

September 15, 2025

How Cheese Fungi Unravel Evolutionary Mysteries

September 15, 2025

Grants Accelerate Training and Research in Biological Complexity

September 15, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating the Effectiveness and Safety of GLP-1 Receptor Agonists in Youths with Obesity or Type 2 Diabetes

Stored Charges Power NiOOH-Catalyzed Water Oxidation

Influence of Country of Birth, Race, and Ethnicity on Prenatal Depression

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.