• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Newts unleashed: Limb muscle regeneration needs metamorphosis and body growth

Bioengineer by Bioengineer
August 2, 2022
in Biology
Reading Time: 3 mins read
0
image
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba find that changes in the extracellular environment provided by metamorphosis and body growth enable newt muscle fibers to dedifferentiate and contribute to limb regeneration

image

Credit: University of Tsukuba

Researchers from the University of Tsukuba find that changes in the extracellular environment provided by metamorphosis and body growth enable newt muscle fibers to dedifferentiate and contribute to limb regeneration

Tsukuba, Japan—Unknown to passersby, a modest little creature with amazing abilities lives and breeds in the forests and paddy fields of Japan. Now, researchers from Japan have discovered how these amphibians’ superpowers are unleashed.

In a study published this month in Scientific Reports, researchers from the University of Tsukuba have revealed that during limb regeneration in newts, two developmental processes—metamorphosis and body growth—are needed to provide the right conditions for muscle cells to be redeployed within the limb stump.

Newts, which are a semiaquatic type of salamander, are like most other amphibians in that they undergo metamorphosis. But unlike their relatives, newts are capable of repeated limb regeneration—even in the adult stage after they have undergone metamorphosis. In some newt species, individuals that have already metamorphosed regenerate muscle via dedifferentiation or reprogramming of muscle fibers in the limb stump, and mobilization of these fibers, to create muscle in the regenerating limb.

“Unlike cell differentiation, where cells become more specialized, cell dedifferentiation is a process via which they become less specialized,” says senior author of the study, Professor Chikafumi Chiba. “Prior to our study, it was unknown whether metamorphosis or body growth was the key developmental process for muscle dedifferentiation.”

The researchers investigated muscle cell dedifferentiation in the Japanese Fire-bellied Newt, Cynops pyrrhogaster, by tracking muscle fibers during limb regeneration while body growth and metamorphosis were experimentally delayed or advanced. The results suggest that metamorphosis and body growth are both needed for muscle differentiation.

Conversely, when larval newt muscles were cultured with a physiologically active thyroid hormone, tracking of the muscle fibers showed that these fibers can dedifferentiate independently of body growth and metamorphosis. These results indicate that newt muscle fibers have an inherent capacity to dedifferentiate, but that both body growth and metamorphosis are required for the fibers to activate this secret ability.

“We suggest that the developmental changes in the extracellular environment, or niche, inhibit the activity of myogenic stem cells—cells that can differentiate into muscle fibers—and promote the latent ability of muscle fibers to dedifferentiate. This way, the stem cells are compensated for by dedifferentiation, allowing newts to regenerate limb muscles throughout their life cycle,” says Professor Chiba.

The results of this study provide an important foundation for future research on extracellular environments as well as the molecular mechanisms of dedifferentiation, such as the gene regulation that underpins this phenomenon. This research will also contribute to a deeper understanding of regeneration, and possible even to potential future medical treatments such as new therapies for diseases and muscle damage.

###
This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology in Japan (221S0002) and the Japan Society for the Promotion of Science (80272152; 18H04061) to C. C.

Original Paper

The article, “The latent dedifferentiation capacity of newt limb muscles is unleashed by a combination of metamorphosis and body growth,” was published in Scientific Reports at DOI: 10.1038/s41598-022-15879-z

Correspondence

Professor CHIBA Chikafumi
Faculty of Life and Environmental Sciences, University of Tsukuba

Related Link

Faculty of Life and Environmental Sciences



Journal

Scientific Reports

DOI

10.1038/s41598-022-15879-z

Article Title

The latent dedifferentiation capacity of newt limb muscles is unleashed by a combination of metamorphosis and body growth

Article Publication Date

1-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.